

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 1

May 22, 2017

PostgreSQL 10 New Features

With Examples

Hewlett-Packard Enterprise Japan Co, Ltd.

Noriyoshi Shinoda

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 2

Index

Index .. 2

1. About This Document .. 6

1.1 Purpose ... 6

1.2 Audience ... 6

1.3 Scope .. 6

1.4 Software Version .. 6

1.5 Question, Comment, and Responsibility .. 6

1.6 Notation .. 7

2. Version notation .. 8

3. New Features .. 9

3.1 Overview .. 9

3.1.1 For large amount data .. 9

3.1.2 For reliability improvement .. 9

3.1.3 For maintenance task ... 10

3.1.4 Incompatibility .. 10

3.2 Native Partition Table ... 12

3.2.1 Overview .. 12

3.2.2 List Partition Table .. 13

3.2.3 Range Partition Table ... 15

3.2.4 Existing tables and partitions .. 18

3.2.5 Operation on partition table .. 19

3.2.6 Execution Plan .. 22

3.2.7 Catalog ... 23

3.2.8 Restriction .. 24

3.3 Logical Replication .. 29

3.3.1 Overview .. 29

3.3.2 Related resources ... 33

3.3.3 Examples .. 35

3.3.4 Collision and inconsistency .. 36

3.3.5 Restriction .. 37

3.4 Enhancement of Parallel Query ... 40

3.4.1 PREPARE / EXECUTE statement .. 40

3.4.2 Parallel Index Scan .. 41

3.4.3 SubPlan .. 42

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 3

3.4.4 Parallel Merge Join / Gather Merge ... 42

3.4.5 Parallel bitmap heap scan ... 43

3.5 Architecture ... 44

3.5.1 Added Catalogs ... 44

3.5.2 Modified catalogs .. 51

3.5.3 Enhancement of libpq library .. 52

3.5.4 Change from XLOG to WAL .. 53

3.5.5 Temporary replication slot .. 54

3.5.6 Change instance startup log .. 54

3.5.7 WAL of hash index .. 55

3.5.8 Added roles ... 55

3.5.9 Custom Scan Callback ... 56

3.5.10 Size of WAL file .. 56

3.5.11 ICU... 56

3.5.12 EUI-64 data type .. 56

3.5.13 Unique Join ... 56

3.5.14 Shared Memory Address .. 57

3.6 Monitoring .. 58

3.6.1 Monitor wait events ... 58

3.6.2 EXPLAIN SUMMARY statement ... 58

3.6.3 VACUUM VERBOSE statement .. 58

3.7 Quorum-based synchronous replication ... 60

3.8 Enhancement of Row Level Security ... 62

3.8.1 Overview .. 62

3.8.2 Validation of multiple POLICY setting .. 62

3.9 Enhancement of SQL statement... 66

3.9.1 UPDATE statement and ROW keyword .. 66

3.9.2 CREATE STATISTICS statement ... 66

3.9.3 GENERATED AS IDENTITY column .. 68

3.9.4 ALTER TYPE statement .. 70

3.9.5 CREATE SEQUENCE statement .. 70

3.9.6 COPY statement .. 71

3.9.7 CREATE INDEX statement .. 71

3.9.8 CREATE TRIGGER statement ... 72

3.9.9 DROP FUNCTION statement ... 72

3.9.10 ALTER DEFAULT PRIVILEGE statement .. 73

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 4

3.9.11 CREATE SERVER statement.. 73

3.9.12 CREATE USER statement .. 73

3.9.13 Functions .. 73

3.9.14 Procedural language ... 79

3.10 Change of configuration parameters .. 81

3.10.1 Added parameters .. 81

3.10.2 Changed parameters ... 82

3.10.3 Parameters with default values changed ... 83

3.10.4 Deprecated parameters ... 84

3.10.5 New function of authentication method ... 84

3.10.6 Default value of authentication setting ... 85

3.10.7 Other parameter change .. 85

3.11 Change of utility .. 86

3.11.1 psql ... 86

3.11.2 pg_ctl .. 88

3.11.3 pg_basebackup .. 88

3.11.4 pg_dump ... 91

3.11.5 pg_dumpall ... 91

3.11.6 pg_recvlogical ... 92

3.11.7 pgbench .. 92

3.11.8 initdb .. 92

3.11.9 pg_receivexlog .. 92

3.11.10 pg_restore .. 92

3.11.11 pg_upgrade .. 92

3.11.12 createuser .. 93

3.11.13 createlang / droplang .. 93

3.12 Contrib modules ... 94

3.12.1 postgres_fdw ... 94

3.12.2 file_fdw .. 95

3.12.3 amcheck .. 96

3.12.4 pageinspect ... 96

3.12.5 pgstattuple ... 97

3.12.6 btree_gist / btree_gin .. 97

3.12.7 pg_stat_statements ... 98

3.12.8 tsearch2... 98

URL list ... 99

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 5

Change history .. 100

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 6

1. About This Document

1.1 Purpose
The purpose of this document is to provide information of the major new features of PostgreSQL 10,

the Beta 1 version being published.

1.2 Audience
This document is written for engineers who already have knowledge of PostgreSQL, such as

installation, basic management, etc.

1.3 Scope
This document describes the major difference between PostgreSQL 9.6 and PostgreSQL 10 Beta 1.

As a general rule, this document examines the functions that users can see when they see changes. It

does not describe and verify all new features. In particular, the following new functions are not

included.

• Bug fix

• Performance improvement by changing internal behavior

• Improvement of regression test

• Operability improvement by psql command tab input

• Improvement of pgbench command (partly described)

• Improve documentation, modify typo in the sources

1.4 Software Version
This document is being verified for the following versions and platforms.

Table 1 Version

Software Versions

PostgreSQL PostgreSQL 9.6.3 (for comparison)

PostgreSQL 10 Beta 1 (May 15, 2017 21:27:43)

Operating System Red Hat Enterprise Linux 7 Update 1 (x86-64)

1.5 Question, Comment, and Responsibility
The contents of this document are not an official opinion of the Hewlett-Packard Enterprise Japan

Co, Ltd. The author and affiliation company do not take any responsibility about the problem caused

by the mistake of contents. If you have any comments for this document, please contact to Noriyoshi

Shinoda (noriyoshi.shinoda@hpe.com) Hewlett-Packard Enterprise Japan Co, Ltd.

mailto:noriyoshi.shinoda@hpe.com

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 7

1.6 Notation
This document contains examples of the execution of the command or SQL statement. Execution

examples are described according to the following rules:

Table 2 Examples notation

Notation Description

Shell prompt for Linux root user

$ Shell prompt for Linux general user

bold User input string

postgres=# psql command prompt for PostgreSQL administrator

postgres=> psql command prompt for PostgreSQL general user

underline Important output items

The syntax is described in the following rules:

Table 3 Syntax rules

Notation Description

Italic Replaced by the name of the object which users use, or the other syntax

[ABC] Indicate that it can be omitted

{ A | B } Indicate that it is possible to select A or B

… General syntax, it is the same as the previous version

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 8

2. Version notation

The notation of major version and minor version is changed from PostgreSQL 10. In the past, the

first two numbers indicated major versions, but only the first number will indicate the major version

in the future.

Figure 1 Version notation

Old Version (9.6 is major version, 1 is minor version)

 ． .

From now on (10 is major version, 0 is minor version)

 ．

9 6 1

10 0

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 9

3. New Features

3.1 Overview
More than 100 new features have been added to PostgreSQL 10. Here are some typical new features

and benefits.

3.1.1 For large amount data
□ Native Partition Table

Native Partition Table is provided as a method of physically partitioning a large scale table. Unlike

table partitioning using conventional inheritance table, performance during data insertion has been

greatly improved. Providing the Native Partition Table makes building a large database easier.

□ Logical Replication

With the Logical Replication feature, it is possible to replicate only some tables between multiple

instances. In traditional streaming replication, slave side instances were read-only, but tables

synchronized by Logical Replication are updatable. Therefore, it is possible to create an index for

analysis query to the slave side instance. Details are described in "3.3 Logical Replication".

□ Enhancement of Parallel Query

In PostgreSQL 9.6, a parallel query feature was provided to improve the query performance for large

tables. Parallel query was used only in "Seq Scan" in PostgreSQL 9.6, but parallel queries are now

available in many situations such as "Index Scan", "Merge Join", "Bitmap Join" and so on. It is

expected to improve query performance for large amount tables. Details are described in "3.4 Extended

Parallel Query".

3.1.2 For reliability improvement
Quorum-based synchronous replication for arbitrarily selecting instances for synchronous replication

is now available (3.7 Quorum-base synchronous replication). Hash index that did not output WAL

before PostgreSQL 9.6 now output WAL. For this reason, hash index is also available in replication

environments (3.5.7 Hash index WAL).

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 10

3.1.3 For maintenance task
Wait events that are output in the pg_stat_activity catalog has been increased significantly.

Information of all backend processes can now be referred (3.5.2 catalog change). A dedicated role to

check the system load has been added (3.5.8 Addition of role).

3.1.4 Incompatibility
Unfortunately, some features of PostgreSQL 10 are incompatible with previous versions.

□ Change name

All the name XLOG was unified to WAL. For this reason, directory names in the database cluster,

utility command names, function names, parameter names, and error messages named XLOG have

been changed. For example, the pg_xlog directory in the database cluster has been changed to the

pg_wal directory. The pg_receivexlog command has been changed to the pg_receivewal command.

The default value of the directory where the log file is output has been changed from pg_log to log.

Details are described in "3.5.4 Change from XLOG to WALL".

□ Default behavior of pg_basebackup utility

By default WAL streaming is used in PostgreSQL 10. Also, the -x parameter has been deprecated.

Details are described in "3.11.3 pg_basebackup".

□ Wait mode of pg_ctl utility

By default, the behavior has been changed to wait for processing to complete on all operations. In

the previous version, pg_ctl command did not wait for the completion of processing in instance startup

processing etc. Details are described in "3.11.2 pg_ctl".

□ Deprecated of plain password store

It is no longer possible to save the password without encrypting it. This will improve security. Details

are described in "3.9.12 CREATE USER statement" and "3.10.2 Changed parameters".

□ Deprecated parameters

The parameter min_parallel_relation_size has been changed to min_parallel_table_scan_size. The

parameter sql_inheritance has been deprecated. Details are described in "3.10.4 Obsolete parameters".

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 11

□ Functions behavior changed

The to_date and to_timestamp functions have changed behavior. As a result of strict checking of the

numerics of each element part of the date/time, errors will occur with values that were not problematic

in the previous version. Also, the make_date function can now specify a date in BC. Details are

described in "3.9.13 Function".

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 12

3.2 Native Partition Table

3.2.1 Overview
Traditional PostgreSQL used the function of the inheritance table as a method of physically

partitioning a large table. The inheritance table creates multiple child tables for the parent table and

maintains the consistency of data by CHECK constraints and triggers. The application can access the

parent table and transparently use the data of the child table. However, this method had the following

disadvantages.

• Data consistency depends on the CHECK constraint specified individually in the child table

• INSERT statements for the parent table need to redirect to child tables by triggers so that it is

slower

Figure 2 Structure of table partition using inheritance table

In PostgreSQL 10, partition table feature uses a more sophisticated table distribution method. It is

the same as the conventional inheritance table that the partition table consists of child tables having

the same structure as the parent table accessed by the application. However, INHERIT specification,

CHECK constraint, trigger are unnecessary, so that addition or deletion of the child table can be done

easily.

In PostgreSQL 10, the column (or calculated value) to be specified for partitioning table. RANGE

partitions that specify the range of values to be stored and LIST partitions that specify only specific

values are available. The type of the partition is determined when creating the parent table.

Inherit Table

(CHECK constraint)

Client

Inherit Table

(CHECK constraint)

Inherit Table

(CHECK constraint)

Parant Table

(INSERT trigger)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 13

Figure 3 Partitioning table structure

3.2.2 List Partition Table
The LSIT partition table is a way to group multiple partitions that can only store certain values. To

create a list partition table, first create a parent table accessed by the application, specifying the

PARTITION BY LIST clause in the CREATE TABLE statement. In the LIST clause, specify the

column name (or calculated value) to be partitioned. Only one column name can be specified. At this

point the INSERT statement for the table fails. For tables created with PARTITION BY clause, the

value of the "relkind" column in the pg_class catalog is 'p'.

Example 1 Create LIST partition table

Next, create a child table (partition) where data is actually stored. In doing so, specify the parent table

using the PARTITION OF clause and specify the value to include in the partition column using the

FOR VALUES IN clause. Multiple values can be specified, separated by commas (,).

Example 2 Create child table

In the following example, refer to the definition of the partition table which has been created.

postgres=> CREATE TABLE plist1(c1 NUMERIC, c2 VARCHAR(10)) PARTITION BY

LIST (c1) ;

CREATE TABLE

Client

Partition

(FOR VALUES clause)

Parent Table

(PARTITION BY clause)

Partition

(FOR VALUES clause)

Partition

(FOR VALUES clause)

postgres=> CREATE TABLE plist1_v100 PARTITION OF plist1 FOR VALUES IN (100) ;

CREATE TABLE

postgres=> CREATE TABLE plist1_v200 PARTITION OF plist1 FOR VALUES IN (200) ;

CREATE TABLE

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 14

Example 3 Reference table definition

The INSERT statement for the parent table is automatically distributed to the partitioned child table.

An INSERT statement of data not included in the partition will result in an error.

Example 4 Execution of INSERT statement on parent table

Partitioned child tables are also directly accessible. However, values other than the values specified

in the partition target column cannot be stored.

postgres=> \d+ plist1

 Table "public.plist1"

 Column | Type | Collation | Nullable | Default | Storage | …

--------+-----------------------+-----------+----------+---------+----------+…

 c1 | numeric | | | | main |…

 c2 | character varying(10) | | | | extended |…

Partition key: LIST (c1)

Partitions: plist1_v100 FOR VALUES IN ('100'),

 plist1_v200 FOR VALUES IN ('200')

postgres=> \d+ plist1_v100

 Table "public.plist1_v100"

 Column | Type | Collation | Nullable | Default | …

--------+-----------------------+-----------+----------+---------+ …

 c1 | numeric | | | | …

 c2 | character varying(10) | | | | …

Partition of: plist1 FOR VALUES IN ('100')

Partition constraint: ((c1 IS NOT NULL) AND (c1 = ANY (ARRAY['100'::numeric])))

postgres=> INSERT INTO plist1 VALUES (100, 'data1') ;

INSERT 0 1

postgres=> INSERT INTO plist1 VALUES (200, 'data2') ;

INSERT 0 1

postgres=> INSERT INTO plist1 VALUES (300, 'data3') ;

ERROR: no partition of relation "plist1" found for row

DETAIL: Partition key of the failing row contains (c1) = (300).

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 15

□ Obtaining partition information

The pg_get_partkeydef function can be used to obtain the partition method and column information.

Restrictions on each partition can be obtained with the pg_get_partition_constraintdef function.

Example 5 Obtain partition information

3.2.3 Range Partition Table
The RANGE partition table is a way to group multiple partitions that can store a range of specific

values. To create a range partition table, first create a parent table accessed by the application. Specify

the PARTITION BY RANGE clause in the CREATE TABLE statement. In the RANGE clause, specify

the column name (or calculated value) to be partitioned. Multiple column names can be specified by

separating them with a comma (,). A NOT NULL constraint is automatically set for the partitioned

columns (except for calculated values). At this point the INSERT statement for the table fails.

Example 6 Create RANGE Partition Table

Next, create a child table (partition) where data is actually stored. Use the PARTITION OF clause to

specify the parent table and use the FOR VALUES FROM TO clause to specify the range of values to

include in the partition. Only the value of "FROM <= value < TO" can be stored in the partition.

postgres=> CREATE TABLE prange1(c1 NUMERIC, c2 VARCHAR(10)) PARTITION BY

RANGE (c1) ;

CREATE TABLE

postgres=> SELECT pg_get_partkeydef('plist1'::regclass) ;

 pg_get_partkeydef

 LIST (c1)

(1 row)

postgres=> SELECT pg_get_partition_constraintdef('plist1_v100'::regclass) ;

 pg_get_partition_constraintdef

 ((c1 IS NOT NULL) AND (c1 = ANY (ARRAY['100'::numeric])))

(1 row)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 16

Example 7 Create child table

In the following example, refer to the definition of the partition table which has been created.

Example 8 Reference table definition

The INSERT statement for the parent table is automatically distributed to the partitioned child table.

An INSERT statement of data not included in the partition will result in an error.

postgres=> CREATE TABLE prange1_a1 PARTITION OF prange1 FOR VALUES FROM

(100) TO (200) ;

CREATE TABLE

postgres=> CREATE TABLE prange1_a2 PARTITION OF prange1 FOR VALUES FROM

(200) TO (300) ;

CREATE TABLE

postgres=> \d+ prange1

 Table "public.prange1"

 Column | Type | Collation | Nullable | Default | …

--------+-----------------------+-----------+----------+---------+ …

 c1 | numeric | | not null | | …

 c2 | character varying(10) | | | | …

Partition key: RANGE (c1)

Partitions: prange1_a1 FOR VALUES FROM ('100') TO ('200'),

 prange1_a2 FOR VALUES FROM ('200') TO ('300')

postgres=> \d+ prange1_a1

 Table "public.prange1_a1"

 Column | Type | Collation | Nullable | Default | …

--------+-----------------------+-----------+----------+---------+ …

 c1 | numeric | | not null | | …

 c2 | character varying(10) | | | | …

Partition of: prange1 FOR VALUES FROM ('100') TO ('200')

Partition constraint: ((c1 >= '100'::numeric) AND (c1 < '200'::numeric))

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 17

Example 9 Execution of INSERT statement on parent table

Partitioned child tables are also directly accessible. However, values other than the values specified

in the partition target column cannot be stored.

Example 10 Access to child table

□ UNBOUNDED specification of range

UNBOUNDED can be specified in the FROM clause or TO clause of the RANGE partition in

addition to concrete values. This designation can create partitions that do not limit the lower limit

(FROM) or upper limit (TO) range. In the example below, two tables are specified with a value less

than 100 and a value of 100 or more as the partition of the prange1 table.

Example 11 UNBOUNDED designation

postgres=> CREATE TABLE prange1_1 PARTITION OF prange1 FOR VALUES FROM

(UNBOUNDED) TO (100) ;

CREATE TABLE

postgres=> CREATE TABLE prange1_2 PARTITION OF prange1 FOR VALUES FROM

(100) TO (UNBOUNDED) ;

CREATE TABLE

postgres=> SELECT * FROM prange1_a1 ;

c1 | c2

-----+-------

 100 | data1

(1 row)

postgres=> INSERT INTO prange1_a1 VALUES (200, 'data2') ;

ERROR: new row for relation "prange1_a1" violates partition constraint

DETAIL: Failing row contains (200, data2).

postgres=> INSERT INTO prange1 VALUES (100, 'data1') ;

INSERT 0 1

postgres=> INSERT INTO prange1 VALUES (200, 'data2') ;

INSERT 0 1

postgres=> INSERT INTO prange1 VALUES (300, 'data3') ;

ERROR: no partition of relation "prange1" found for row

DETAIL: Partition key of the failing row contains (c1) = (300).

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 18

A partition that specifies "a value to divide a partition containing an existing UNBOUNDED value"

can not be added.

Example 12 Split UNBOUNDED partition

3.2.4 Existing tables and partitions
Validation of how to register an existing table in the partition table and remove it from the partition

table.

□ ATTACH of child table

An existing table can be attached as a partition (child table) in a parent table. The child table must be

created in the same column configuration as the parent table. Also, it is possible to detach a table

registered as a partition into a normal table.

Example 13 Create a table with the same structure as the parent table

Attach the created table as a partition of the parent table. Use the ALTER TABLE ATTACH

PARTITION statement. At the same time, specify the value of the partitioning column. In the example

below, a plist1_v100 table storing data of LIST partition c1=100 and a plist1_v200 table storing data

of c1=200 are registered.

Example 14 Attach a partition

postgres=> CREATE TABLE prange1_3 PARTITION OF prange1 FOR VALUES FROM

(200) TO (300) ;

ERROR: partition "prange1_3" would overlap partition "prange1_2"

postgres=> CREATE TABLE plist1_v100 (LIKE plist1) ;

CREATE TABLE

postgres=> CREATE TABLE plist1_v200 (LIKE plist1) ;

CREATE TABLE

postgres=> ALTER TABLE plist1 ATTACH PARTITION plist1_v100 FOR VALUES IN (100) ;

ALTER TABLE

postgres=> ALTER TABLE plist1 ATTACH PARTITION plist1_v200 FOR VALUES IN (200) ;

ALTER TABLE

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 19

Objects that can be registered as partitions are limited to tables or FOREIGN TABLE.

□ DETACH of child table

To remove the partitioned child table from the parent table, execute the ALTER TABLE DETACH

statement

Example 15 Detach a partition

3.2.5 Operation on partition table
Validation of the behavior when executing DDL or COPY statement for the parent table or child table.

□ TRUNCATE for parent table

Execution of the TRUNCATE statement for the parent table propagates to all partitions.

Example 16 TRUNCATE for parent table

□ COPY for parent table

The COPY statement for the parent table propagates to the child table.

postgres=> ALTER TABLE plist1 DETACH PARTITION plist1_v100 ;

ALTER TABLE

postgres=> TRUNCATE TABLE part1 ;

TRUNCATE TABLE

postgres=> SELECT COUNT(*) FROM part1_v1 ;

 count

 0

(1 row)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 20

Example 17 COPY for parent table

□ DROP parent table

Dropping the parent table also drops all child tables. The DROP TABLE statement for the child table

drops only the child table.

□ Add / delete columns to the parent table

When adding / deleting a column to / from the parent table, the child table is changed in the same

way. However, columns that are partition keys cannot be deleted. Also, if the partition is FOREIGN

TABLE, column addition is not done automatically.

postgres=# COPY part1 FROM '/home/postgres/part1.csv' WITH (FORMAT text) ;

COPY 10000

postgres=# SELECT COUNT(*) FROM part1_v1 ;

 count

 10000

(1 row)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 21

Example 18 Adding and deleting columns from the parent table

□ TEMPORARY table

A TEMPORARY table can be used for both parent table and partitioned child table. However, if the

parent table is a temporary table, the partition table must also be a temporary table.

□ UNLOGGED table

An UNLOGGED table can be used for parent table or partition table.

□ Hierarchical structure

By partitioning different columns, hierarchical partition table can be created. In the example below,

a table partitioned by column c2 is added under the table partitioned by column c1.

postgres=> \d part1

 Table "public.part1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------

 c1 | numeric | | |

 c2 | character varying(10) | | |

Partition key: LIST (c1)

Number of partitions: 2 (Use \d+ to list them.)

postgres=> ALTER TABLE part1 ADD c3 NUMERIC ;

ALTER TABLE

postgres=> \d part1_v1

 Table "public.part1_v1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------

 c1 | numeric | | |

 c2 | character varying(10) | | |

 c3 | numeric | | |

Partition of: part1 FOR VALUES IN ('100')

postgres=> ALTER TABLE part1 DROP c1 ;

ERROR: cannot drop column named in partition key

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 22

Example 19 Hierarchical partition

3.2.6 Execution Plan
If there is a condition to specify the partition to be accessed in the WHERE clause, an execution plan

that accesses only specific partitions is created.

Example 20 Partition-identifiable SQL and execution plan

However, when the partition cannot be specified (ex. left side of the WHERE clause is a formula),

an execution plan that access all partitions is created.

postgres=> EXPLAIN SELECT * FROM plist1 WHERE c1 = 100 ;

 QUERY PLAN

 Append (cost=0.00..20.38 rows=4 width=70)

 -> Seq Scan on plist1_v100 (cost=0.00..20.38 rows=4 width=70)

 Filter: (c1 = '100'::numeric)

(3 rows)

postgres=> CREATE TABLE part2 (c1 NUMERIC, c2 NUMERIC, c3 VARCHAR(10)) PARTITION

BY LIST (c1) ;

CREATE TABLE

postgres=> CREATE TABLE part2_v1 PARTITION OF part2 FOR VALUES IN (100) PARTITION

BY LIST (c2) ;

CREATE TABLE

postgres=> CREATE TABLE part2_v1_v2 PARTITION OF part2_v1 FOR VALUES IN (200) ;

CREATE TABLE

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 23

Example 21 Partition-unspecified SQL and execution plan

3.2.7 Catalog
 Information on the partitioned parent table can be checked in the pg_partitioned_table catalog. Below

is the table information of which name part1, LIST partition (partstrat = 'l'), attached table number 2

(partnatts = 2).

Example 22 Information of the parent table

The table of which the relispartition column in the pg_class catalog is "true" is a child table. When

the table is child table, the partition boundary information is stored in the relpartbound column in the

pg_class catalog. Information on this column can be converted easily by pg_get_expr function.

postgres=> EXPLAIN SELECT * FROM plist1 WHERE c1 + 1 = 101 ;

 QUERY PLAN

 Append (cost=0.00..44.90 rows=8 width=70)

 -> Seq Scan on plist1_v100 (cost=0.00..22.45 rows=4 width=70)

 Filter: ((c1 + '1'::numeric) = '101'::numeric)

 -> Seq Scan on plist1_v200 (cost=0.00..22.45 rows=4 width=70)

 Filter: ((c1 + '1'::numeric) = '101'::numeric)

(5 rows)

postgres=> SELECT partrelid::regclass, * FROM pg_partitioned_table ;

-[RECORD 1]-+------

partrelid | part1

partrelid | 16444

partstrat | l

partnatts | 2

partattrs | 1

partclass | 3125

partcollation | 0

partexprs |

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 24

Example 23 Information of child table

3.2.8 Restriction
The partition table has the following restrictions.

□ Number of partitioning columns

Only one column can be specified in the PARTITION BY LIST clause of the CREATE TABLE

statement. In the column name part, it is possible to specify a calculation expression enclosed in

functions and parentheses.

Example 24 Partition using function

postgres=> CREATE TABLE plist2(c1 NUMERIC, c2 VARCHAR(10)) PARTITION BY

LIST (upper(c2)) ;

CREATE TABLE

postgres=> SELECT relname, relispartition, relpartbound FROM pg_class WHERE

relname = 'prange1_v1' ;

-[RECORD 1]--+--

relname | prange1_v1

relispartition | t

relpartbound | {PARTITIONBOUND :strategy r :listdatums <> :lowerdatums

({PARTRANGEDATUM :infinite false :value {CONST :consttype 1700 :consttypmod

-1 :constcollid 0 :constlen -1 :constbyval false :constisnull

false :location -1 :constvalue 8 [32 0 0 0 0 -128 100 0]}}) :upperdatums

({PARTRANGEDATUM :infinite false :value {CONST :consttype 1700 :consttypmod

-1 :constcollid 0 :constlen -1 :constbyval false :constisnull

false :location -1 :constvalue 8 [32 0 0 0 0 -128 -56 0]}})}

postgres=> SELECT relname, relispartition, pg_get_expr(relpartbound, oid)

FROM pg_class WHERE relname = 'prange1_v1' ;

-[RECORD 1]--+-----------------------------------

relname | prange1_v1

relispartition | t

pg_get_expr | FOR VALUES FROM ('100') TO ('200')

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 25

□ NULL for partitioning column

Null values cannot be stored in partitioned columns of RANGE partitions. For a list partition, it can

be stored by creating a partition containing NULL values.

Example 25 RANGE partition and NULL value

□ Restriction of child table

The child table must have the same structure as the parent table. Excess and deficiency or data type

mismatch of column are not allowed.

Example 26 Partition with different structure child table

□ Primary Key Constraint / Unique Constraint / Check Constraint

Primary key constraint (or unique constraint) cannot be specified in the parent table. The uniqueness

postgres=> CREATE TABLE plist3(c1 NUMERIC, c2 VARCHAR(10)) PARTITION BY LIST

(c1) ;

CREATE TABLE

postgres=> CREATE TABLE plist3_v100 (c1 NUMERIC, c2 VARCHAR(10), c3 NUMERIC) ;

CREATE TABLE

postgres=> ALTER TABLE plist3 ATTACH PARTITION plist3_v100 FOR VALUES IN (100) ;

ERROR: table "plist3_v100" contains column "c3" not found in parent "plist3"

DETAIL: New partition should contain only the columns present in parent.

postgres=> CREATE TABLE plist3_v200 (c1 NUMERIC);

CREATE TABLE

postgres=> ALTER TABLE plist3 ATTACH PARTITION plist3_v200 FOR VALUES IN (200) ;

ERROR: child table is missing column "c2"

postgres=> CREATE TABLE partnl(c1 NUMERIC, c2 VARCHAR(10)) PARTITION BY

RANGE (c1) ;

CREATE TABLE

postgres=> CREATE TABLE partnlv PARTITION OF partnl FOR VALUES FROM

(UNBOUNDED) TO (UNBOUNDED) ;

CREATE TABLE

postgres=> INSERT INTO partnl VALUES (NULL, 'null value') ;

ERROR: range partition key of row contains null

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 26

of the entire partition table depends on the primary key setting of the child table. CHECK constraints

on the parent table can be specified. When creating a child table, the CHECK constraint is

automatically added to the child table.

Example 27 Add primary key to parent table

□ INSERT ON CONFLICT statement

The INSERT ON CONFLICT statement for the parent table cannot be executed.

□ UPDATE of partitioning column

When updating the value of a partitioned column, it can be updated only to the value contained in

the FOR VALUES clause of the child table. It cannot be updated to a value that cannot be included in

the child table.

Example 28 Update partitioned column

Since the above error occurs, data movement between child tables cannot be realized by UPDATE

statement (use DELETE RETURNING INSERT statement).

□ ATTACHing of already stored data table

ATTACHing a child table that stores data already to the parent table is possible. However, in that

case, all tuples are checked whether they can be included in the partition.

postgres=> ALTER TABLE plist1 ADD CONSTRAINT pl_plist1 PRIMARY KEY (c1) ;

ERROR: primary key constraints are not supported on partitioned tables

LINE 1: ALTER TABLE plist1 ADD CONSTRAINT pl_plist1 PRIMARY KEY (c1)...

 ^

postgres=> UPDATE plist1 SET c1 = 200 WHERE c1 = 100;

ERROR: new row for relation "plist1_v100" violates partition constraint

DETAIL: Failing row contains (200, data1).

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 27

Example 29 ATTACH of the partition containing the tuple

□ Partition where column values overlap

RANGE partitions with overlapping ranges and LIST partitions with the same value cannot be

created. In the example below, an attempt is made to attach partitions with column values 100 to 200

and 150 to 300 partitions, but it occurs an error.

Example 30 Partition where column values overlap

□ Specify FOREIGN TABLE as a child table

FOREIGN TABLE can be specified as child table. However, in this case, aggregation push-downis

not executed.

postgres=> CREATE TABLE plist2 (c1 NUMERIC, c2 VARCHAR(10)) PARTITION BY LIST

(c1) ;

CREATE TABLE

postgres=> CREATE TABLE plist2_v100 (LIKE plist2) ;

CREATE TABLE

postgres=> INSERT INTO plist2_v100 VALUES (100, 'data1') ;

INSERT 0 1

postgres=> INSERT INTO plist2_v100 VALUES (200, 'data2') ;

INSERT 0 1

postgres=> ALTER TABLE plist2 ATTACH PARTITION plist2_v100 FOR VALUES IN (100) ;

ERROR: partition constraint is violated by some row

postgres=> ALTER TABLE prange2 ATTACH PARTITION prange2_v1 FOR VALUES

FROM (100) TO (200) ;

ALTER TABLE

postgres=> ALTER TABLE prange2 ATTACH PARTITION prange2_v2 FOR VALUES

FROM (150) TO (300) ;

ERROR: partition "prange2_v2" would overlap partition "prange2_v1"

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 28

Example 31 ATTACH for FOREIGN TABLE

Example 32 SQL executed on the remote instance

The INSERT statement fails if the child table is FOREIGN TABLE.

Example 33 fail of INSERT statement

□ Index

It is necessary to create an index for each child table. Indexes cannot be created on the parent table.

Example 34 Index creation failure

postgres=# CREATE FOREIGN TABLE datar2(c1 NUMERIC, c2 VARCHAR(10)) SERVER

remote1 ;

CREATE FOREIGN TABLE

postgres=# ALTER TABLE pfor1 ATTACH PARTITION datar2 FOR VALUES IN ('data2') ;

ALTER TABLE

postgres=# SELECT COUNT(*) FROM pfor1 WHERE c2='data2' ;

statement: START TRANSACTION ISOLATION LEVEL REPEATABLE READ

execute <unnamed>: DECLARE c1 CURSOR FOR

 SELECT NULL FROM public.datar2

statement: FETCH 100 FROM c1

statement: CLOSE c1

statement: COMMIT TRANSACTION

postgres=# INSERT INTO pfor1 VALUES (100, 'data1') ;

ERROR: cannot route inserted tuples to a foreign table

postgres=> CREATE TABLE part1(c1 NUMERIC, c2 VARCHAR(10)) PARTITION BY

LIST (c1) ;

CREATE TABLE

postgres=> CREATE INDEX idx1_part1 ON part1(c1) ;

ERROR: cannot create index on partitioned table "part1"

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 29

3.3 Logical Replication

3.3.1 Overview
Logical Replication is a function to perform replication between instances for each table. In

PostgreSQL 10, in order to realize the Logical Replication function, PUBLICATION object managing

the master table and UBSCRIPTION object created in the slave instance are constructed. Replication

is performed between tables of the same name including the schema name on the master side and the

slave side. Slony-I is existing software with equivalent functions, but it differs in that Logical

Replication does not use triggers and the slave side table is also updatable.

Figure 4 Object structure

Logical Replication is implemented by the standard replication plug-in pgoutput based on the basis

of Logical Decoding implemented in PostgreSQL 9.4.

□ PUBLICATION object

PUBLICATION is an object created in the master instance. In the PUBLICATION object, register

the table to be replicated. Multiple tables can be targeted for replication with a single PUBLICATION

object. It is possible to select operations (INSERT / DELETE / UPDATE) to perform replication for

each PUBLICATION. By default, all operations (DML) are applied on the slave side. PUBLICATION

objects can be created by users with CREATE privilege on the database. In the psql command, a list

is displayed with the \dRp command.

Master instance

Table#1 Table#2

Slave instance

Table#1 Table#2

Update

PUBLICATION SUBSCRIPTION
WAL

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 30

Syntax 1 Create PUBLICATION object

The FOR TABLE clause specifies the table to be replicated. It is also possible to specify multiple

tables separated by commas (,).In the WITH clause, specify the target DML statement. When omitted,

all DML are targeted. The "publish" option by specifying separate the DML name with a comma (,),

it is possible to specify the DML of interest. If the ONLY clause is omitted, inherited child tables are

also subject to replication.

When FOR ALL TABLES is specified, all tables in the database are subject to replication. When a

table is added on PUBLICATION side, it is automatically registered as replication target.

To alter PUBLICATION, execute the ALTER PUBLICATION statement. The replication target table

can be added to the PUBLICATION object by specifying the ADD TABLE clause. The DROP TABLE

clause deletes replication targets. The SET TABLE clause limits the tables contained in

PUBLICATION to the specified table only. To change the DML to be replicated, execute the ALTER

PUBLICATION SET statement.

Syntax 2 Alter PUBLICATION object

To delete the PUBLICATION object Execute the DROP PUBLICATION statement.

Syntax 3 Drop PUBLICATION object

A PUBLICATION object can receive replication requests from multiple SUBSCRIPTION. In

addition, the table can belong to more than one PUBLICATION at the same time.

CREATE PUBLICATION name

[FOR TABLE [ONLY] table_name [*] [, …] | FOR ALL TABLES]

[WITH (options [= value] [, …])]

ALTER PUBLICATION name ADD TABLE [ONLY] table_name [, table_name …]

ALTER PUBLICATION name SET TABLE [ONLY] table_name [, table_name …]

ALTER PUBLICATION name DROP TABLE [ONLY] table_name [, table_name …]

ALTER PUBLICATION name SET (option [= value] [, …])

ALTER PUBLICATION name OWNER TO { owner | CURRENT_USER | SESSION_USER }

ALTER PUBLICATION name RENAME TO new_name

DROP PUBLICATION [IF EXISTS] name [, …] [{ CASCADE | RESTRICT }]

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 31

□ SUBSCRIPTION object

SUBSCRIPTION is an object that connects to the PUBLICATION object and updates the table based

on the WAL information received via the wal sender process. The table to be updated is a table with

the same name (including the schema name) as the table managed by the connection target

PUBLICATION object.

To create a SUBSCRIPTION object, execute the CREATE SUBSCRIPTION statement. In the

CONNECTION clause, specify the connection string for the instance where the PUBLICATION is

created. Specify the name of the database where the PUBLICATION object is created in the dbname

parameter. As with streaming replication, it is necessary to connect by users with REPLICATION

privilege. It may be necessary to edit the pg_hba.conf file on PUBLICATION side. In the

PUBLICATION clause, specify the name of the PUBLICATION object that manages the replication

target table. Multiple PUBLICATION objects can be specified. SUPERUSER privilege is required to

create SUBSCRIPTION object. In the psql command, a list is displayed with the \dRs command.

Syntax 4 Create SUBSCRIPTION object

Table 4 option specification

Syntax Description Note

enabled Enable SUBSCRIPTION Default

create_slot Create Replication Slot Default

slot_name = name | NONE Name of the Replication Slot Default is SUBSCRIPTION

name

copy_data Copy of the initial data Default

connect Connect to PUBLICATION Default

synchronous_commit Overrides configuration parameter Default "off"

By default, Logical Replication Slot with the same name as SUBSCRIPTION is created in the

PUBLICATION instance. It is not checked whether the PUBLICATION object specified in the

CREATE SUBSCRIPTION statement actually exists.

CREATE SUBSCRIPTION name CONNECTION 'conn_info' PUBLICATION

publication_name [, publication_name …]

[WITH (option [= value] , …)]

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 32

Syntax 5 Alter SUBSCRIPTION object

To change the SUBSCRIPTION object, execute the ALTER SUBSCRIPTION statement. The same

value as the CREATE SUBSCRIPTION statement can be specified in the option clause. Execution of

the ALTER SUBSCRIPTION REFRESH PUBLICATION statement is required when adding a table

to the PUBLICATION object.

To drop the SUBSCRIPTION object, use the DROP SUBSCRIPTION statement. By default, it also

deletes the replication slots created on the PUBLICATION side. If the instance on the PUBLICATION

side is stopped, execute the DROP SUBSCRIPTION statement after releasing the replication slot with

the ALTER SUBSCRIPTION DISABLE statement and the ALTER SUBSCRIPTION SET

(slot_name = NONE) statement.

Syntax 6 Drop SUBSCRIPTION object

Since new objects have been added, PUBLICATION and SUBSCRIPTION can now be specified in

COMMENT ON and SECURITY LABEL statements.

□ Cascade replication

It was confirmed that the replication environment can be cascaded.

DROP SUBSCRIPTION [IF EXISTS] name [{ CASCADE | RESTRICT }]

ALTER SUBSCRIPTION name CONNECTION 'connection'

ALTER SUBSCRIPTION SET PUBLICATION publication_name [, publication_name …]

{ REFRESH [WITH (option [= value]) | SKIP REFRESH }

ALTER SUBSCRIPTION name REFRESH PUBLICATION WITH (option [, option …])

ALTER SUBSCRIPTION name { ENABLE | DISABLE }

ALTER SUBSCRIPTION SET (option [= value] [, …])

ALTER SUBSCRIPTION name OWNER TO owner | CURRENT_USER | SESSION_USER

ALTER SUBSCRIPTION name RENAME TO new_name

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 33

Figure 5 Cascade replication

3.3.2 Related resources
This section describes the objects that constitute Logical Replication and related parameters.

□ Processes

Ordinarily, the process "bgworker: logical replication launcher" is running. The worker process

"bgworker: logical replication worker for subscription" is invoked for each SUBSCRIPTION in the

instance where the SUBSCRIPTION object is created. The SUBSCRIPTION worker process connects

to the master instance. In order to forward the WAL to the SUBSCRIPTION, the wal sender process

is started on the master instance.

□ Catalogs

The following catalog has been newly added.

Table 5 Added catalog

Catalog name Contents Instance

pg_publication PUBLICATION information Master

pg_publication_rel Table information of WAL transfer target Master

pg_publication_tables Table information of WAL transfer target Master

pg_stat_subscription WAL information received in SUBSCRIPTION Slave

pg_subscription SUBSCRIPTION information Slave

pg_subscription_rel Replication table information Slave

Master

Table#1

Slave

PUBLICATION SUBSCRIPTION

Cascade

Table#1

SUBSCRIPTION PUBLICATION

Table#1

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 34

Records are also added to the pg_stat_replication catalog and pg_replication_slots catalog. In the

instance where the SUBSCRIPTION object is created, the status of Logical Replication can be

checked using the pg_stat_subscription catalog. Users without superuser privilege can view this

catalog.

Example 35 Search pg_stat_subscription catalog

□ Parameters

The following configuration parameters are related to the Logical Replication settings.

Table 6 Related configuration parameters

Parameter name Instance Description

max_replication_slots Master Maximum number of replication slots

max_wal_senders Master Maximum number of wal senders process

max_logical_replication_workers Slave (new) Maximum number of logical replication

worker processes

wal_level Master It must be specified as 'logical'

max_worker_processes Master / Slave Maximum number of worker processes

max_sync_workers_per_subscription Slave (new) Parallel degree setting when copying

initial data

□ Replication Slots

The CREATE SUBSCRIPTION statement creates a replication slot with the same name as

SUBSCRIPTION in the PUBLICATION instance (by default). If a replication slot with the same name

postgres=> SELECT * FROM pg_stat_subscription ;

-[RECORD 1]---------+------------------------------

subid | 16396

subname | sub1

pid | 23275

relid |

received_lsn | 0/1650C68

last_msg_send_time | 2017-05-18 23:22:56.654912+09

last_msg_receipt_time | 2017-05-18 23:22:56.654939+09

latest_end_lsn | 0/1650C68

latest_end_time | 2017-05-18 23:22:56.654912+09

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 35

already exists, the CREATE SUBSCRIPTION statement will fail.

Example 36 Replication Slot status

3.3.3 Examples
In the example below, the table schema1.data1 is created for replication. Next, the PUBLICATION

object is created and the schema1.data1 table is registered in the PUBLICATION object.

Example 37 Create replication target table (master / slave instance)

The PUBLICATION object is created and the schema1.table1 table is added.

Example 38 PUBLICATION object creation (master instance)

postgres=> CREATE TABLE schema1.data1(c1 NUMERIC PRIMARY KEY, c2 VARCHAR(10)) ;

CREATE TABLE

postgres=> CREATE PUBLICATION pub1 ;

CREATE PUBLICATION

postgres=> ALTER PUBLICATION pub1 ADD TABLE schema1.data1 ;

ALTER PUBLICATION

postgres=> SELECT * FROM pg_replication_slots ;

-[RECORD 1]-------+-----------

slot_name | sub1

plugin | pgoutput

slot_type | logical

datoid | 16385

database | postgres

temporary | f

active | t

active_pid | 12140

xmin |

catalog_xmin | 606

restart_lsn | 0/535A1AF0

confirmed_flush_lsn | 0/535A1B28

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 36

The SUBSCRIPTION object is created. When the SUBSCRIPTION object is created, a replication

slot with the same name is created in the PUBLICATION instance. SUPERUSER privilege is required

to create SUBSCRIPTION object.

Example 39 Create SUBSCRIPTION object (slave instance)

3.3.4 Collision and inconsistency
Both on the PUBLICATION instance and the SUBSCRIPTION instance, the replication target table

is updatable. Therefore, there is a possibility that WAL sent from PUBLICATION cannot be applied

on SUBSCRIPTION side. If problems such as data collision occur, the subscription worker process

stops and restarts at 5 second intervals. The following example is a log when a primary key violation

occurs (on the SUBSCRIPTION side). The constraints (PRIMARY KEY, UNIQUE, CHECK) set in

the SUBSCRIPTION side table are checked against the data transferred from the PUBLICATION side.

Example 40 Log that detected primary key violation on SUBSCRIPTION side

Example 41 Worker restart log

On the PUBLICATION side, the wal sender process detects disconnection of the session and the

following log is output.

postgres=# CREATE SUBSCRIPTION sub1 CONNECTION 'host=master1 port=5432

user=postgres dbname=postgres' PUBLICATION pub1 ;

NOTICE: synchronized table states

NOTICE: created replication slot "sub1" on publisher

CREATE SUBSCRIPTION

ERROR: duplicate key value violates unique constraint "data1_pkey"

DETAIL: Key (c1)=(14) already exists.

LOG: worker process: logical replication worker for subscription 16399

(PID 3626) exited with exit code 1

LOG: starting logical replication worker for subscription "sub1"

LOG: logical replication sync for subscription sub1, table data1 started

LOG: logical replication synchronization worker finished processing

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 37

Example 42 Session disconnection log

□ Updating multiple tables with a single transaction

When multiple tables are updated within a transaction, they are also updated on a SUBSCRIPTION

side by transaction basis. For this reason, transaction consistency is maintained on SUBSCRIPTION

side as well. In order to resolve the conflict, update the problem tuple on SUBSCRIPTION side.

Although there is also a method of referring to the pg_replication_origin_status catalog and a conflict

resolution method using the pg_replication_origin_advance function, the author has not tested it. Also,

if the table is locked on the SUBSCRIPTION side (ex. LOCK TABLE statement), replication also

stops.

□ DELETE / UPDATE target tuple does not exist

If on the PUBLICATION UPDATE or DELETE statement is executed and a target tuple does not

exist on the SUBSCRIPTION side, no error occurs.

Table 7 Behavior at mismatch occurrence

Master operation Mismatch / Collision Behavior

INSERT Constraint violation on slave Replication stopped

Different column definitions (compatible) Processing continues / No log

Different column definitions (no

compatibility)

Replication stopped

UPDATE No target tuple in slave Processing continues / No log

Constraint violation on slave Replication stopped

DELETE No target tuple in slave Processing continues / No log

TRUNCATE Do not propagate Processing continues / No log

ALTER TABLE Do not propagate Processing continues / No log

3.3.5 Restriction
Logical Replication has the following restrictions.

□ Execute permission

The SUPERUSER privilege is required to execute the CREATE PUBLICATION FOR ALL TABLES

statement. A PUBLICATION object corresponding to an individual table can also be created by a

general user.

LOG: unexpected EOF on client connection with an open transaction

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 38

□ Initial data

When replicating the table in which data is already stored, existing data is transferred to the

SUBSCRIPTION side by default. At that time, existing data on SUBSCRIPTION side will not be

deleted. Initial data transfer is done asynchronously using temporary replication slots. The CREATE

SUBSCRIPTION statement finish without waiting for the completion of the initial data transfer.

□ Primary key or unique key

Primary key (PRIMARY KEY) constraint or unique key (UNIQUE) and NOT NULL constraint are

required on the target table to propagate UPDATE or DELETE statement to be replicated. Also, to

propagate UPDATE or DELETE statement in the table where the unique key is set, following

statements need to be executed. On the PUBLICATION side, ALTER TABLE REPLICA IDENTITY

FULL statement or ALTER TABLE REPLICA IDENTITY USING INDEX statement, on the

SUBSCRIPTION side, ALTER TABLE REPLICA IDENTITY USING INDEX statement.

□ DDL statement

The ALTER TABLE and TRUNCATE statements do not propagate to the SUBSCRIPTION side. The

DDL statement can be executed the table of either side.

□ Character encoding

Replication can be executed between databases with different character encoding. Character

encoding are converted automatically.

□ Auditing

Data update processed by SUBSCRIPTION is not recorded even if parameter log_statement

parameter is set to 'all'.

□ Combination with partition table

Partition parent table cannot be added to PUBLICATION. To replicate partitioned table, it is

necessary to add child tables to the PUBLICATION.

Example 43 Partition tables and replication

postgres=> ALTER PUBLICATION pub1 ADD TABLE range1 ;

ERROR: "range1" is a partitioned table

DETAIL: Adding partitioned tables to publications is not supported.

HINT: You can add the table partitions individually.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 39

□ In-Instance Replication

When executing the CREATE SUBSCRIPTION statement, the CREATE SUBSCRIPTION

statement hangs by specifying the same instance as the PUBLICATION object in the CONNECTION

clause. By creating a Replication Slot in advance and specifying the WITH (create_slot = false)

clause in the CREATE SUBSCRIPTION statement, it is possible to create an in-instance replication

environment.

□ Mutual replication

It is not possible to create mutually updated table structure(multimaster replication) using

PUBLICATION and SUBSCRIPTION. Although the CREATE PUBLICATION / CREATE

SUBSCRIPTION statements succeed, when executed the replication, the WAL applied to the slave

side will return to the master side, so that WAL application error will occur.

□ Trigger execution

Triggers on the SUBSCRIPTION side table are not executed by update processing of Logical

Replication.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 40

3.4 Enhancement of Parallel Query
In PostgreSQL 10, the processing that can use parallel queries has been expanded.

3.4.1 PREPARE / EXECUTE statement
Parallel queries can now be executed even in search processing using PREPARE and EXECUTE

statements. Parallel processing was not executed in that process in PostgreSQL 9.6.

Example 44 Parallel query with PREPARE and EXECUTE statements

postgres=> EXPLAIN SELECT COUNT(*) FROM large1 ;

 QUERY PLAN

--

 Finalize Aggregate (cost=11614.55..11614.56 rows=1 width=8)

 -> Gather (cost=11614.33..11614.54 rows=2 width=8)

 Workers Planned: 2

 -> Partial Aggregate (cost=10614.33..10614.34 rows=1 width=8)

 -> Parallel Seq Scan on large1 (cost=0.00..9572.67 rows=416667

width=0)

(5 rows)

postgres=> PREPARE p1 AS SELECT COUNT(*) FROM large1 ;

PREPARE

postgres=> EXPLAIN EXECUTE p1 ;

 QUERY PLAN

--

 Finalize Aggregate (cost=11614.55..11614.56 rows=1 width=8)

 -> Gather (cost=11614.33..11614.54 rows=2 width=8)

 Workers Planned: 2

 -> Partial Aggregate (cost=10614.33..10614.34 rows=1 width=8)

 -> Parallel Seq Scan on large1 (cost=0.00..9572.67 rows=416667

width=0)

(5 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 41

3.4.2 Parallel Index Scan
Parallel queries are now also used for Index Scan and Index Only Scan.

Example 45 Parallel Index Scan

Example 46 Parallel Index Only Scan

postgres=> EXPLAIN SELECT * FROM large1 WHERE c1 BETWEEN 10000 AND 20000000 ;

 QUERY PLAN

 Gather (cost=0.43..369912.83 rows=7917410 width=12)

 Workers Planned: 2

 -> Parallel Index Scan using idx1_large1 on large1

(cost=0.43..369912.83 rows=3298921 width=12)

 Index Cond: ((c1 >= '10000'::numeric) AND (c1 <= '20000000'::numeric))

(4 rows)

postgres=> EXPLAIN SELECT COUNT(c1) FROM large1 WHERE c1 BETWEEN 1000 AND

10000000 ;

 QUERY PLAN

Finalize Aggregate (cost=316802.38..316802.39 rows=1 width=8)

 -> Gather (cost=316802.17..316802.38 rows=2 width=8)

 Workers Planned: 2

 -> Partial Aggregate (cost=315802.17..315802.18 rows=1 width=8)

 -> Parallel Index Only Scan using idx1_large1 on

large1 (cost=0.43..305386.50 rows=4166267 width=6)

 Index Cond: ((c1 >= '1000'::numeric) AND (c1 <=

'10000000'::numeric))

(6 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 42

3.4.3 SubPlan
Parallel queries can now be used with SELECT statements that has SubPlan.

Example 47 SubPlan and parallel query

3.4.4 Parallel Merge Join / Gather Merge
Parallel queries are now available even when Merge Join is chosen. Gather Merge which gathers

results while Merge by parallel processing is now available.

postgres=> EXPLAIN SELECT * FROM large1 l1 WHERE l1.c1 NOT IN (SELECT l2.c1

FROM large2 l2 WHERE l2.c1 in (1000,2000,3000)) ;

 QUERY PLAN

 Seq Scan on large1 l1 (cost=23269.95..59080.95 rows=1000000 width=11)

 Filter: (NOT (hashed SubPlan 1))

 SubPlan 1

 -> Gather (cost=1000.00..23269.93 rows=6 width=6)

 Workers Planned: 2

 -> Parallel Seq Scan on large2 l2 (cost=0.00..22269.33 rows=2

width=6)

 Filter: (c1 = ANY ('{1000,2000,3000}'::numeric[]))

(7 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 43

Example 48 Parallel Merge Join

3.4.5 Parallel bitmap heap scan
Bitmap Heap Scan has supported parallel query.

Example 49 Parallel Bitmap Heap Scan

postgres=> EXPLAIN SELECT COUNT(*) FROM large1 INNER JOIN large2 ON large1.c1 =

large2.c1 ;

 QUERY PLAN

Finalize Aggregate (cost=447792.07..447792.08 rows=1 width=8)

 -> Gather (cost=447791.86..447792.07 rows=2 width=8)

 Workers Planned: 2

 -> Partial Aggregate (cost=446791.86..446791.87 rows=1 width=8)

 -> Merge Join (cost=407305.94..442727.96 rows=1625561 width=0)

 Merge Cond: (large2.c1 = large1.c1)

 -> Sort (cost=112492.52..114575.86 rows=833333 width=6)

 Sort Key: large2.c1

 -> Parallel Seq Scan on large2 (cost=0.00..19144.33

 rows=833333 width=6)

 -> Materialize (cost=294813.42..304813.25 rows=1999965 wi

…

postgres=> EXPLAIN SELECT COUNT(c1) FROM large1 WHERE c1 BETWEEN 100000 AND 200000 ;

 QUERY PLAN

 Finalize Aggregate (cost=18500.74..18500.75 rows=1 width=8)

 -> Gather (cost=18500.52..18500.73 rows=2 width=8)

 Workers Planned: 2

 -> Partial Aggregate (cost=17500.52..17500.53 rows=1 width=8)

 -> Parallel Bitmap Heap Scan on large1 …

 Recheck Cond: ((c1 >= '100000'::numeric) …

 -> Bitmap Index Scan on idx1_large1 …

 Index Cond: ((c1 >= '100000'::numeric) …

(8 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 44

3.5 Architecture

3.5.1 Added Catalogs
With the additional features, the following system catalogs have been added.

Table 8 Added system catalog list

Catalog name Description

pg_hba_file_rules Referencing pg_hba.conf file

pg_partitioned_table Partitioning table information

pg_publication PUBLICATION object for Logical Replication

pg_publication_rel Target table list for Logical Replication

pg_publication_tables Target table list for Logical Replication

pg_sequence SEQUENCE object list

pg_sequences SEQUENCE object list

pg_stat_subscription Status for Logical Replication

pg_statistic_ext Extended statistics view

pg_subscription SUBSCRIPTION object for Logical Replication

pg_subscription_rel Target table list for Logical Replication

□ pg_hba_file_rules catalog

The pg_hba_file_rules catalog can refer to the contents of the pg_hba.conf file. When changing the

file, the contents of the view are reflected immediately. Comment only lines are not included.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 45

Table 9 pg_hba_file_rules catalog

Column name Data type Description

line_number integer Line number in the file

type text Connection type of local, host, etc

database text[] Target database or all, replication

user_name text[] Username or all

address text TCP/IP address

netmask text Net mask

auth_method text Authentication method

options text[] Options

error text Error messages

□ pg_partitioned_table catalog

The pg_partitioned_table catalog stores information on the parent table on partitioning table.

Table 10 pg_partitioned_table catalog

Column name Data type Description

partrelid oid OID for the table

partstrat char Partitioning method (list = 'l', range = 'r')

partnatts smallint Number of attached partitions

partattrs int2vector Array of partition column values

partclass oidvector The data type of the partition key.

partcollation oidvector Collation information of partition-key columns

partexprs pg_node_tree Information on partitioning columns

□ pg_publication catalog

The pg_publication catalog stores information on PUBLICATION objects used in Logical

Replication.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 46

Table 11 pg_publication catalog

Column name Data type Description

pubname name Name of the PUBLICATION

pubowner oid Owner of the PUBLICATION object

puballtables boolean If true, this publication automatically includes all tables in the

database

pubinsert boolean If true, INSERT operations are replicated for tables

pubupdate boolean If true, UPDATE operations are replicated for tables

pubdelete boolean If true, UPDATE operations are replicated for tables

□ pg_publication_rel catalog

The pg_publication_rel catalog stores the information of the replication target table contained in the

PUBLICATION object.

Table 12 pg_publication_rel catalog

Column name Data type Description

prpubid oid OID of the PUBLICATION object

prrelid oid OID of the target table

□ pg_publication_tables catalog

The pg_publication_tables catalog stores the information of the replication target table contained in

the PUBLICATION object.

Table 13 pg_publication_tables catalog

Column name Data type Description

pubname name Name of the PUBLICATION object

schemaname name Name of the schema

tablename name Name of the target table

□ pg_sequence catalog

The pg_sequence catalog that provides a list of SEQUENCE objects has been added. This catalog

can be searched by general users.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 47

Table 14 pg_sequence catalog

Column name Data type Description

seqrelid oid OID of the object

seqtypid oid Data type of the SEQUENCE

seqstart bigint Start value

seqincrement bigint Incremental value

seqmax bigint Maximum sequence value

seqmin bigint Minimum sequence value

seqcache bigint Number of caches

seqcycle boolean Indicate whether to cyclic

□ pg_sequences catalog

The pg_sequences catalog that provides a list of SEQUENCE object has been added. Although this

catalog can be searched by general users, the last_value column is NULL if the nextval function has

not been executed yet or if the search user does not have USAGE or SELECT privilege on that

SEQUENCE.

Table 15 pg_sequences catalog

Column name Data type Description

schemaname name Name of the schema

sequencename name Name of the SEQUENCE object

sequenceowner name Name of the owner

data_type regtype Data type of the SEQUENCE

start_value bigint Start value

min_value bigint Minimum value

max_value bigint Maximum value

increment_by bigint Incremental value

cycle boolean Indicate whether to cyclic

cache_size bigint Number of caches

last_value bigint Last sequence value or NULL

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 48

Example 50 Reference pg_sequences catalog

The result of the SELECT statement for the sequence has changed due to the addition of the

pg_sequences catalog.

Example 51 Search for a sequence (PostgreSQL 9.6)

postgres=> \x

Expanded display is on.

postgres=> SELECT * FROM pg_sequences ;

-[RECORD 1]-+--------------------

schemaname | public

sequencename | seq1

sequenceowner | postgres

data_type | bigint

start_value | 1

min_value | 1

max_value | 9223372036854775807

increment_by | 1

cycle | f

cache_size | 1

last_value |

postgres=> CREATE SEQUENCE seq1 ;

CREATE SEQUENCE

postgres=> SELECT * FROM seq1 ;

-[RECORD 1]-+--------------------

sequence_name | seq1

last_value | 1

start_value | 1

increment_by | 1

max_value | 9223372036854775807

min_value | 1

cache_value | 1

log_cnt | 0

is_cycled | f

is_called | f

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 49

Example 52 Search for a sequence (PostgreSQL 10)

□ pg_stat_subscription catalog

The pg_stat_subscription catalog stores WAL information received by the SUBSCRIPTION object.

This catalog can refer to data only while the replication process is running.

Table 16 pg_stat_subscription catalog

Column name Data type Description

subid oid OID of the SUBSCRIPTION

subname name Name of the SUBSCRIPTION

pid integer Process id of the logical replication

worker

relid oid OID of the table

received_lsn pg_lsn Received LSN

last_msg_send_time timestamp with time zone Message send time

last_msg_receipt_time timestamp with time zone Message receive time

latest_end_lsn pg_lsn Latest end LSN

latest_end_time timestamp with time zone Latest end timestamp

□ pg_statistic_ext catalog

The pg_statistic_ext catalog stores information on extended statistics created with the CREATE

STATISTICS statement.

postgres=> CREATE SEQUENCE seq1 ;

CREATE SEQUENCE

postgres=> SELECT * FROM seq1 ;

-[RECORD 1]-----

last_value | 1

log_cnt | 0

is_called | f

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 50

Table 17 pg_statistic_ext catalog

Column name Data type Description

stxrelid oid OID of the statistics acquisition table

stxname name Name of the extended statistics

stxnamespace oid OID of the namespace

stxowner oid Owner of extended statistics

stxkeys int2vector Array of column numbers from which extended statistics

were obtained

stxkind "char"[] Types of the statistics activated

stxndistinct pg_ndistinct Serialized N-distinct value

stxdependencies pg_dependencies Column dependencies

□ pg_subscription catalog

The pg_subscription catalog stores information on the SUBSCRIPTION object used by Logical

Replication. This catalog can only be viewed by users with SUPERUSER privilege.

Table 18 pg_subscription catalog

Column name Data type Description

subdbid oid OID of database constituting SUBSCRIPTION

subname name Name of the SUBSCRIPTION object

subowner oid Owner’s OID

subenabled boolean Is the object valid?

subconninfo text Connection information to PUBLICATION instance

subslotname name Name of the replication slot

subsynccommit text Synchronous COMMIT setting value

subpublications text[] Array of PUBLICATION names

□ pg_subscription_rel catalog

The pg_subscription_rel catalog stores the information on table targeted by the SUBSCRIPTION

object used in Logical Replication.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 51

Table 19 pg_subscription_rel catalog

Column name Data type Description

srsubid oid OID of SUBSCRIPTION object

srrelid oid OID of target table

srsubstate "char" Status i = initializing, d = data transferring, s = synchronizing, r

= normal

srsublsn pg_lsn The last LSN of the s or r state of srsubstate column

3.5.2 Modified catalogs
The following catalogs have been changed.

Table 20 System catalog with columns added

Catalog name Added column Data Type Description

pg_class relispartition boolean Partition parent table

relpartbound pg_node_tree Partitioning information

pg_replication_slots temporary boolean Indicate a temporary slot

pg_policy polpermissive boolean PERMISSIVE mode

pg_policies permissive text PERMISSIVE mode

pg_stat_replication write_lag interval Write lag

flush_lag interval Flush lag

replay_lag interval Replay lag

pg_collation collprovider char Provider information

collversion text Version information

pg_stat_activity backend_type text Type of process

pg_attribute attidentity char GENERATED column

□ pg_stat_activity catalog

The statuses of all backend processes except the postmaster process are now displayed in the

pg_stat_activity catalog. The type of backend process can be confirmed by backend_type column.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 52

Example 53 Referencing pg_stat_activity catalog

3.5.3 Enhancement of libpq library
The following enhancements have been added to the PostgreSQL Client library libpq.

□ Multi-instance specification

Settings for connecting to multiple instances which are already supported in the JDBC Driver are

also implemented in the libpq library. As described below, multiple host names and port numbers can

be described in comma-separated form.

Syntax 7 Multi-instance specification

Multiple values can be specified with the comma (,) separator in the environment variables PGHOST

and PGPORT. Along with this, it is now possible to specify multiple values for the --host and --port

parameters of the psql and pg_basebackup commands

□ Added target_session_attrs attribute

Target_session_attrs has been added as a new connection attribute. This parameter can be specified

as "any" if the instance to be connected can be hot standby, or "read-write" if the instance is writable.

A similar specification can be specified for the environment variable PGTARGETSESSIONATTRS.

Internally, it seems to be use the SHOW transaction_read_only statement to determine the connection

host=host1,host2

host=host1,host2 port=port1,port2

postgresql://host1,host2/

postgresql://host1:port2,host2:port2/

postgres=# SELECT pid,wait_event, backend_type FROM pg_stat_activity ;

 pid | wait_event | backend_type

-------+---------------------+---------------------

 12251 | AutoVacuumMain | autovacuum launcher

 12253 | LogicalLauncherMain | background worker

 12269 | | client backend

 12249 | BgWriterHibernate | background writer

 12248 | CheckpointerMain | checkpointer

 12250 | WalWriterMain | walwriter

(6 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 53

destination.

□ Added passfile attribute

"passfile" has been added as a new connection attribute. In the past, it was specified with the

environment variable PGPASSFILE etc.

3.5.4 Change from XLOG to WAL
The name of XLOG used in the function, directory name, and utility was unified in WAL. Also, the

pg_clog directory has been changed to the pg_xact directory. The default output directory name of the

log file has been changed due to the effect of changing the default value of the parameter log_directory.

The name "location" indicating the location of WAL has been changed to "lsn".

Table 21 Changed name

Category Before change After changing

Directories pg_xlog pg_wal

pg_clog pg_xact

pg_log log

Utilities pg_receivexlog pg_receivewal

pg_resetxlog pg_resetwal

pg_xlogdump pg_waldump

pg_basebackup --xlog-method pg_basebackup --wal-method

pg_basebackup --xlogdir pg_basebackup --waldir

initdb --xlogdir initdb --waldir

Functions pg_xlog_location_diff pg_wal_location_diff

pg_switch_xlog pg_switch_wal

pg_current_xlog_* pg_current_wal_*

pg_xlogfile* pg_walfile*

pg_is_xlog_replay_replay_paused pg_is_wal_replay_replay_paused

pg_last_xlog_* pg_last_wal_*

pg_*location* pg_*lsn*

Catalog pg_stat_replication Catalog

- sent_location

- write_location

- flush_location

- replay_location

pg_stat_replication Catalog

- sent_lsn

- write_lsn

- flush_lsn

- replay_lsn

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 54

At the same time, the string XLOG included in the error message has also been changed to WAL. It

has been changed to the following message.

• Failed while allocating a WAL reading processor.

• could not read two-phase state from WAL at …

• expected two-phase state data is not present in WAL at …

• Failed while allocating a WAL reading processor.

• WAL redo at %X/%X for %s

• Forces a switch to the next WAL file if a new file has not been started within N seconds.

The description of the parameter archive_timeout has been changed as follows.

• Forces a switch to the next WAL file if a new file has not been started within N seconds.

3.5.5 Temporary replication slot
Replication slots can be used for building a streaming replication environment or for the

pg_basebackup command. In PostgreSQL 10, temporary replication slots can now be created. A

temporary replication slot is the same as a normal replication slot except that it is automatically deleted

by session termination. To create a temporary replication slot, specify true for the third parameter of

the pg_create_physical_replication_slot function or pg_create_logical_replication_slot function.

Along with this, "temporary" column has been added to the pg_replication_slots catalog.

Example 54 Create temporary replication slot

3.5.6 Change instance startup log
The listen address and port number are now output to the instance startup log.

postgres=# SELECT pg_create_physical_replication_slot('temp1', true, true) ;

 pg_create_physical_replication_slot

 (temp1,0/30000370)

(1 row)

postgres=# SELECT slot_name, temporary FROM pg_replication_slots ;

 slot_name | temporary

-----------+-----------

 temp1 | t

(1 row)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 55

Example 55 Instance start log (partially omitted)

3.5.7 WAL of hash index
Hash index of previous versions did not generate WAL on update. In PostgreSQL 10, it now generate

WAL, so it can now be used in streaming replication environments. The warnings outputted in the

CREATE INDEX USING HASH statement are no longer output.

Example 56 Create hash index (PostgreSQL 10)

Example 57 Create hash index (PostgreSQL 9.6)

3.5.8 Added roles
The following roles have been added. All roles do not have "login" privilege.

Table 22 Added role

Role Description

pg_read_all_settings All configuration parameters can be referred.

pg_read_all_stats All pg_stat_ * views can be referred.

pg_stat_scan_tables Execute the monitoring function to take AccessShareLock lock

pg_monitor All of the above 3 roles have authority

$ pg_ctl -D data start

waiting for server to start....

LOG: listening on IPv4 address "0.0.0.0", port 5432

LOG: listening on IPv6 address "::", port 5432

LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"

LOG: redirecting log output to logging collector process

HINT: Future log output will appear in directory "log".

 done

server started

postgres=> CREATE INDEX idx1_hash1 ON hash1 USING hash (c1) ;

CREATE INDEX

postgres=> CREATE INDEX Idx1_hash1 ON hash1 USING hash (c1) ;

WARNING: hash indexes are not WAL-logged and their use is discouraged

CREATE INDEX

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 56

Registering the following Contrib modules, execute permissions for function are automatically

granted to the roles above.

• pg_buffercache

• pg_freespacemap

• pg_stat_statements

• pg_visibility

• pgstattuple

3.5.9 Custom Scan Callback
A new callback called at the end of the parallel query has been added. It is explained in the manual

"58.3. Executing Custom Scans" as follows.

Example 58 Custom Scan Callback

3.5.10 Size of WAL file
The choice of WAL file size determined by the --with-wal-segsize option of the "configure" command

has increased. 128, 256, 512, 1024 can be used in addition to the conventional 1 to 64.

3.5.11 ICU
ICU can be used for locale function. Specify --with-icu when executing "configure" command. When

building in Linux environment, installation of libicu package and libicu-devel package is necessary.

3.5.12 EUI-64 data type
The data type macaddr8 indicating the EUI-64 address is now available.

3.5.13 Unique Join
 When joining tables, the execution plan that performs a join using a unique index can be planned.

Initialize a parallel worker's custom state based on the shared state set

up in the leader by InitializeDSMCustomScan. This callback is optional,

and needs only be supplied if this custom path supports parallel execution.

void (*ShutdownCustomScan) (CustomScanState *node);

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 57

In the execution plan displayed by EXPLAIN VERBOSE statement, it will appear as "Inner Unique:

true".

Example 59 Inner Unique Join

3.5.14 Shared Memory Address
When the EXEC_BACKEND macro is defined and installed, the environment variable

PG_SHMEM_ADDR can be used. Specify the start address of System V shared memory used as part

of the cache. Internally it is digitized with the strtoul function and used as the second parameter of the

shmat system call.

postgres=> CREATE TABLE unique1(c1 INTEGER PRIMARY KEY, c2 VARCHAR(10)) ;

CREATE TABLE

postgres=> CREATE TABLE unique2(c1 INTEGER PRIMARY KEY, c2 VARCHAR(10)) ;

CREATE TABLE

…

postgres=> EXPLAIN VERBOSE SELECT * FROM unique1 u1 INNER JOIN unique2 u2 ON u1.c1 =

u2.c1 ;

 QUERY PLAN

 Hash Join (cost=280.00..561.24 rows=10000 width=18)

 Output: u1.c1, u1.c2, u2.c1, u2.c2

 Inner Unique: true

 Hash Cond: (u1.c1 = u2.c1)

 -> Seq Scan on public.unique1 u1 (cost=0.00..155.00 rows=10000 width=9)

 Output: u1.c1, u1.c2

 -> Hash (cost=155.00..155.00 rows=10000 width=9)

 Output: u2.c1, u2.c2

 -> Seq Scan on public.unique2 u2 (cost=0.00..155.00 rows=10000 width=9)

 Output: u2.c1, u2.c2

(10 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 58

3.6 Monitoring

3.6.1 Monitor wait events
Wait events that are shown in the wait_event_type and wait_event columns of the pg_stat_activity

catalog have been added. LWLockNamed and LWLockTranche that were output in the

wait_event_type column in PostgreSQL 9.6 have been renamed to LWLock.

Table 23 Value to be output to the wait_event_type column

wait_event_type

column

Description Change

LWLock Light weight lock wait Renamed

Lock Lock wait

BufferPin Waiting for buffer

Activity Waiting for processing acceptance of background processes Added

Client A state in which the client is waiting for processing Added

Extension Wait for background worker Added

IPC A state waiting for processing from another process Added

Timeout Waiting for timeout Added

IO Waiting for I / O Added

3.6.2 EXPLAIN SUMMARY statement
A SUMMARY clause has been added to the EXPLAIN statement to output only the execution plan

generation time.

Example 60 EXPLAIN SUMMARY

3.6.3 VACUUM VERBOSE statement
Oldest xmin and frozen pages are now output as the output of the VACUUM VERBOSE statement.

postgres=> EXPLAIN (SUMMARY) SELECT * FROM data1 ;

 QUERY PLAN

--

 Seq Scan on data1 (cost=0.00..15406.00 rows=1000000 width=11)

 Planning time: 0.072 ms

(2 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 59

Example 61 Execute VACUUM VERBOSE statement

postgres=> VACUUM VERBOSE data1 ;

NFO: vacuuming "public.data1"

…

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 587

There were 0 unused item pointers.

Skipped 0 pages due to buffer pins, 0 frozen pages.

0 pages are entirely empty.

…

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 60

3.7 Quorum-based synchronous replication
In PostgreSQL 9.5 and earlier, only one instance was available for synchronous replication. In

PostgreSQL 9.6, synchronous replication can be performed on multiple instances.

PostgreSQL 10 implements Quorum-based synchronous replication, which arbitrarily selects an

instance to perform synchronous replication. The synchronous replication environment is set by the

synchronous_standby_names configuration parameter as before.

Syntax 8 Up to PostgreSQL 9.5

Syntax 9 PostgreSQL 9.6

Syntax 10 PostgreSQL 10

Specifying FIRST or omitting it will have the same behavior as PostgreSQL 9.6. Priorities are

determined in the order described in the parameter application_name, and synchronous replication is

performed for the number of instances specified by num_sync.

If ANY is specified, it will not depend on the order of the instances specified in parameter

application_name, and will determine the completion of synchronous replication when WAL is

transferred to the slave instance specified by num_sync. If ANY is specified for the configuration

parameter synchronous_standby_names, "quorum" is output in the sync_state column of the

pg_stat_replication catalog.

synchronous_standby_names = application_name, application_name, …

synchronous_standby_names = num_sync (application_name,

application_name, …)

synchronous_standby_names = FIRST | ANY num_sync (application_name,

application_name, …)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 61

Example 62 Quorum-based synchronous replication

postgres=> SHOW synchronous_standby_names ;

 synchronous_standby_names

 any 2 (standby1, standby2, standby3)

(1 row)

postgres=> SELECT application_name,sync_state, sync_priority

FROM pg_stat_replication ;

 application_name | sync_state | sync_priority

------------------+------------+---------------

 standby1 | quorum | 1

 standby2 | quorum | 1

 standby3 | quorum | 1

(3 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 62

3.8 Enhancement of Row Level Security

3.8.1 Overview
When multiple policies were set for a table, policies were determined by OR condition in PostgreSQL

9.6 and earlier. In PostgreSQL 10 it is possible to specify a policy with an AND condition. The AS

PERMISSIVE clause and the AS RESTRICTIVE clause can now be specified in the CREATE

POLICY statement that create the policy. When specifying the AS PERMISSIVE clause, the restriction

becomes loose (OR), and if AS RESTRICTIVE is specified, the limit becomes strict (AND). When

designation is omitted, it becomes the same as in the previous version. Along with this, a column

indicating condition specification has been added to the pg_policy catalog and the pg_policies catalog.

Table 24 Added column (pg_policy catalog)

Column name Data type Description

polpermissive boolean POLICY mode (PERMISSIVE in the case of true)

Table 25 Added column (pg_policies catalog)

Column name Data type Description

permissive text POLICY mode (PERMISSIVE or RESTRICTIVE)

Syntax 11 CREATE POLICY statement

3.8.2 Validation of multiple POLICY setting
The author set multiple POLICY for the table and verified the effect. POLICY pol1 in PERMISSIVE

mode and POLICY pol2, pol3 in RESTRICTIVE mode were prepared for the table poltbl1 and

veryfied by combining them.

CREATE POLICY policy_name ON table_name

 [AS { PERMISSIVE | RESTRICTIVE }]

 [FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]

 [TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER } [, ...]]

 [USING (using_expression)]

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 63

Example 63 Creating tables and POLICY (PERMISSIVE + RESTRICTIVE)

postgres=> CREATE TABLE poltbl1 (c1 NUMERIC, c2 VARCHAR(10), uname VARCHAR(10)) ;

CREATE TABLE

postgres=> ALTER TABLE poltbl1 ENABLE ROW LEVEL SECURITY ;

ALTER TABLE

postgres=> CREATE POLICY pol1 ON poltbl1 FOR ALL USING (uname = current_user) ;

CREATE POLICY

postgres=> CREATE POLICY pol2 ON poltbl1 AS RESTRICTIVE FOR ALL USING (c2 =

'data') ;

CREATE POLICY

postgres=> SELECT polname, polpermissive FROM pg_policy ;

 polname | polpermissive

---------+---------------

 pol1 | t

 pol2 | f

(2 rows)

postgres=> SELECT tablename, policyname, permissive FROM pg_policies ;

 tablename | policyname | permissive

-----------+------------+-------------

 poltbl1 | pol1 | PERMISSIVE

 poltbl1 | pol2 | RESTRICTIVE

(2 rows)

postgres=> \d poltbl1

 Table "public.poltbl1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------

 c1 | numeric | | |

 c2 | character varying(10) | | |

 uname | character varying(10) | | |

Policies:

 POLICY "pol1"

 USING (((uname)::name = CURRENT_USER))

 POLICY "pol2" AS RESTRICTIVE

 USING (((c2)::text = 'data'::text))

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 64

In the above example, the setting of the table poltbl1 shows that POLICY pol2 is RESTRICTIVE.

Example 64 Confirmation of execution plan (PERMISSIVE + RESTRICTIVE)

It can be seen that the two conditions are combined by "AND". Next, delete POLICY pol1 and create

a table applying POLICY pol3 in RESTRICTIVE mode.

Example 65 Create POLICIES in RESTRICTIVE mode

postgres=> EXPLAIN SELECT * FROM poltbl1 ;

 QUERY PLAN

--

 Seq Scan on poltbl1 (cost=0.00..20.50 rows=1 width=108)

 Filter: (((c2)::text = 'data'::text) AND ((uname)::name = CURRENT_USER))

(2 rows)

postgres=> CREATE POLICY pol3 ON poltbl1 AS RESTRICTIVE FOR ALL USING

(c1 > 1000) ;

CREATE POLICY

postgres=> \d poltbl1

 Table "public.poltbl1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------

 c1 | numeric | | |

 c2 | character varying(10) | | |

 uname | character varying(10) | | |

Policies:

 POLICY "pol2" AS RESTRICTIVE

 USING (((c2)::text = 'data'::text))

 POLICY "pol3" AS RESTRICTIVE

 USING ((c1 > (1000)::numeric))

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 65

Example 66 Confirmation of execution plan (RESTRICTIVE + RESTRICTIVE)

If all policies are in RESTRICTIVE mode, the execution plan does not seem to be displayed.

postgres=> EXPLAIN SELECT * FROM poltbl1 ;

 QUERY PLAN

--

 Result (cost=0.00..0.00 rows=0 width=108)

 One-Time Filter: false

(2 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 66

3.9 Enhancement of SQL statement
This section explains enhancement of SQL statements.

3.9.1 UPDATE statement and ROW keyword
The ROW keyword can be used for UPDATE statement.

Example 67 UPDATE statement with ROW keyword

3.9.2 CREATE STATISTICS statement
With the CREATE STATISTICS statement, it is now possible to gather statistical information on

multiple column correlations. The timing at which the statistical values are actually collected is when

the ANALYZE statement is executed.

Syntax 12 CREATE STATISTICS statement

For stat_name, specify the name of the extended statistics. It can also be qualified with a schema

name. At least two columns must be specified. For stat_type, "dependencies", "ndistinct" can be

specified. If omitted, both are assumed to be specified.

To alter the extended statistics, execute the ALTER STATISTICS statement.

Syntax 13 ALTER STATISTICS statement

To drop extended extensions, execute the DROP STATISTICS statement.

Syntax 14 DROP STATISTICS statement

CREATE STATISTICS [IF NOT EXISTS] stat_name [(stat_type [, …])]

ON col1, col2 [, ...] FROM table_name

ALTER STATISTICS stat_name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER STATISTICS stat_name RENAME TO new_name

ALTER STATISTICS stat_name SET SCHEMA new_schema

DROP STATISTICS [IF EXISTS] name [, ...]

postgres=> UPDATE pgbench_tellers SET (bid, tbalance) = ROW (2, 1) WHERE

tid = 10;

UPDATE 1

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 67

Example 68 Creating extended statistics with the CREATE STATISTICS statement

Example 69 Confirm the information of the table that created the extended statistics

Information of the extended statistics can be checked in the pg_statistic_ext catalog.

Example 70 Confirm extended statistics

postgres=> CREATE TABLE stat1(c1 NUMERIC, c2 NUMERIC, c3 VARCHAR(10)) ;

CREATE TABLE

postgres=> INSERT INTO stat1 VALUES(generate_series(1, 100000) / 5,

 generate_series(1, 100000) / 10, 'init') ;

INSERT 0 100000

postgres=> CREATE STATISTICS stat1_stat1 ON c1, c2 FROM stat1 ;

CREATE STATISTICS

postgres=> \d stat1

 Table "public.stat1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------

 c1 | numeric | | |

 c2 | numeric | | |

 c3 | character varying(10) | | |

Statistics objects:

 "public"."stat1_stat1" (ndistinct, dependencies) ON c1, c2 FROM stat1

postgres=> SELECT * FROM pg_statistic_ext ;

-[RECORD 1]---+---

stxrelid | 16575

stxname | stat1_stat1

stxnamespace | 2200

stxowner | 16454

stxkeys | 1 2

stxkind | {d,f}

stxndistinct | {"1, 2": 19982}

stxdependencies | {"1 => 2": 1.000000, "2 => 1": 0.170467}

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 68

3.9.3 GENERATED AS IDENTITY column
The GENERATED AS IDENTITY constraint has been added to the CREATE TABLE statement to

automatically assign a unique value to a column. It is almost the same function as the "serial" type

which can be used in the conventional version, but some specifications are different. The

GENERATED AS IDENTITY constraint can be added to more than one column. Both the serial type

and the GENERATED AS IDENTITY constraint internally use the SEQUENCE object.

Syntax 15 CREATE TABLE statement (column definition)

SMALLINT, INT, BIGINT can be used for the data type (type). When creating a table using the

LIKE clause, the GENERATED constraint is not inherited. Only the NOT NULL constraint is

inherited.

To add a GENERATED AS IDENTITY constraint to an existing column, execute the ALTER TABLE

statement. A NOT NULL constraint is required for the specified column.

Syntax 16 ALTER TABLE statement (add constraint)

Syntax 17 ALTER TABLE statement (drop constraint)

Syntax 18 ALTER TABLE statement (update constraint)

Information on the columns created with the above syntax is stored in the "columns" table of the

information_schema schema. In the past, the is_identity column was "NO", and the other information

was NULL.

□ GENERATED ALWAYS

Columns specified with GENERATED ALWAYS are prohibited from setting column values from the

application by the INSERT statement or updating to values other than the DEFAULT value by the

column_name type GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY

[(sequence_option)]

ALTER TABLE table_name ALTER COLUMN column_name ADD GENERATED { ALWAYS |

BY DEFAUT } AS IDENTITY { (sequence_option) }

ALTER TABLE table_name ALTER COLUMN column_name DROP IDENTITY [IF EXISTS]

ALTER TABLE table_name ALTER COLUMN column_name { SET GENERATED { ALWAYS

| BY DEFAULT } | SET sequence_option | RESTART [[WITH] restart] }

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 69

UPDATE statement.

Example 71 GENERATED ALWAYS

Any value can be stored on GENERATED column by specifying the OVERRIDING SYSTEM

VALUE clause in the INSERT statement.

Example 72 OVERRIDING SYSTEM VALUE clause

□ GENERATED BY DEFAULT

When GENERATED BY DEFAULT clause is specified, the automatic numbering column is

updatable. It has the same behavior as the "serial" type column.

postgres=> CREATE TABLE ident1 (c1 bigint GENERATED ALWAYS AS IDENTITY, c2 VARCHAR(10)) ;

CREATE TABLE

demodb=> \d ident1

 Table "public.ident1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+------------------------------

 c1 | bigint | | not null | generated always as identity

 c2 | character varying(10) | | |

postgres=> INSERT INTO ident1(c1, c2) VALUES (1, 'data1') ;

ERROR: cannot insert into column "c1"

DETAIL: Column "c1" is an identity column defined as GENERATED ALWAYS.

HINT: Use OVERRIDING SYSTEM VALUE to override.

postgres=> INSERT INTO ident1(c2) VALUES ('data1') ;

INSERT 0 1

postgres=> UPDATE ident1 SET c1=2 WHERE c1=1 ;

ERROR: column "c1" can only be updated to DEFAULT

DETAIL: Column "c1" is an identity column defined as GENERATED ALWAYS.

postgres=> UPDATE ident1 SET c1=DEFAULT WHERE c1=1 ;

UPDATE 1

postgres=> INSERT INTO ident1 OVERRIDING SYSTEM VALUE VALUES (100, 'data1') ;

INSERT 0 1

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 70

Example 73 GENERATED BY DEFAULT

3.9.4 ALTER TYPE statement
 It is possible to change the name of the ENUM type by using the ALTER TYPE statement.

Syntax 19 ALTER TYPE RENAME VALUE statement

Example 74 Change of ENUM type by ALTER TYPE statement

3.9.5 CREATE SEQUENCE statement
The data type can be specified in the CREATE SEQUENCE statement. The data types that can be

specified are SMALLINT, INTEGER, and BIGINT (default). The range of sequence values is limited

to the range of data types.

Syntax 20 CREATE SEQUENCE statement

postgres=> CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy') ;

CREATE TYPE

postgres=> ALTER TYPE mood RENAME VALUE 'ok' TO 'good' ;

ALTER TYPE

ALTER TYPE type_name RENAME VALUE existing_val TO replace_val

CREATE SEQUENCE sequence_name [AS type] [INCREMENT …]

postgres=> CREATE TABLE ident2 (c1 bigint GENERATED BY DEFAULT AS

IDENTITY, c2 VARCHAR(10)) ;

CREATE TABLE

postgres=> INSERT INTO ident2 VALUES (1, 'data1') ;

INSERT 0 1

postgres=> INSERT INTO ident2(c2) VALUES ('data2') ;

INSERT 0 1

postgres=> UPDATE ident2 SET c1=2 WHERE c2='data2' ;

UPDATE 1

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 71

Example 75 Specify SMALLINT type in CREATE SEQUENCE statement

It is also possible to change the data type with the ALTER SEQUENCE AS statement. If the data

type is changed, the maximum value of SEQUENCE will also be updated. However, changes to reduce

the current sequence value are not allowed.

3.9.6 COPY statement
A COPY statement can now be executed on a simple view with the INSTEAD OF INSERT trigger.

Example 76 COPY statement for VIEW

3.9.7 CREATE INDEX statement
"autosummarize" can now be specified in the WITH clause of the CREATE INDEX statement that

creates a BRIN index. When this is specified, it specifies that summarization is performed on the

postgres=> CREATE TABLE instead1(c1 NUMERIC, c2 VARCHAR(10)) ;

CREATE TABLE

postgres=> CREATE VIEW insteadv1 AS SELECT c1, c2 FROM instead1 ;

CREATE VIEW

postgres=> CREATE OR REPLACE FUNCTION view_insert_row1() RETURNS trigger AS

 $$

 BEGIN

 INSERT INTO instead1 VALUES (new.c1, new.c2);

 RETURN new;

 END;

 $$

 LANGUAGE plpgsql ;

CREATE FUNCTION

postgres=> CREATE TRIGGER insteadv1_insert

 INSTEAD OF INSERT ON insteadv1 FOR EACH ROW

 EXECUTE PROCEDURE view_insert_row1() ;

CREATE TRIGGER

postgres=# COPY insteadv1 FROM '/home/postgres/instead.csv' ;

COPY 2

postgres=> CREATE SEQUENCE seq1 AS SMALLINT ;

CREATE SEQUENCE

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 72

previous page when data is inserted in the page.

Example 77 Enhancement of BRIN index

3.9.8 CREATE TRIGGER statement
The REFERENCING clause can be used in the CREATE TRIGGER statement. It became possible

to specify the table name to store the update difference. This setting can be set only for AFTER trigger.

Syntax 21 CREATE TRIGGER statement

3.9.9 DROP FUNCTION statement
More than one FUNCTION can now be specified in the DROP FUNCTION statement. To specify

multiple FUNCTIONs, separate them with a comma (,).

postgres=> CREATE INDEX idx1_brin1 ON brin1 USING brin (c1) WITH

(autosummarize) ;

CREATE INDEX

postgres=> \d brin1

 Table "public.brin1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------

 c1 | numeric | | |

 c2 | character varying(10) | | |

Indexes:

 "idx1_brin1" brin (c1) WITH (autosummarize='true')

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } …

[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY

DEFERRED]]

[REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name }

[...]]

[FOR [EACH] { ROW | STATEMENT }]

…

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 73

3.9.10 ALTER DEFAULT PRIVILEGE statement
The ON SCHEMAS clause can now be specified in the GRANT and REVOKE clauses of the

ALTER DEFAULT PRIVILEGE statement. In the conventional version, it was ON FUNCTIONS,

ON SEQUENCES, ON TABLES, and ON TYPES only.

3.9.11 CREATE SERVER statement
The IF NOT EXISTS clause is now available in CREATE SERVER and CREATE USER MAPPING

statements.

3.9.12 CREATE USER statement
The UNENCRYPTED clause can no longer be used in CREATE USER, CREATE ROLE, and

ALTER USER statements. Passwords are no longer stored in the pg_shadow catalog without being

converted.

Example 78 UNENCRYPTED clause

3.9.13 Functions
The following functions have been added or enhanced.

□ Delete element from JSONB array

Elements can be deleted from the JSONB array.

Example 79 Delete element from JSONB array

postgres=> SELECT '{"a":1 , "b":2, "c":3}'::jsonb - '{a,c}'::text[] ;

 ?column?

 {"b": 2}

(1 row)

postgres=# CREATE USER user1 UNENCRYPTED PASSWORD 'user1' ;

ERROR: UNENCRYPTED PASSWORD is no longer supported

LINE 1: CREATE USER user1 UNENCRYPTED PASSWORD 'user1' ;

 ^

HINT: Remove UNENCRYPTED to store the password in encrypted form instead.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 74

□ pg_current_logfile

The pg_current_logfile function returns the path of the output log file. Path including configuration

parameter log_directory can be acquired. NULL is returned if the configuration parameter

log_destination is set to "syslog" or the configuration parameter logging_collector is set to "off".

SUPERUSER privilege is required to execute this function.

Example 80 pg_current_logfile function

□ xmltable

An xmltable function is provided that obtains tabular output from XML data. In order to use this

function, it is necessary to specify --with-libxml as a parameter of the "configure" command at the

time of installation. Also, in order to build the binary with the --with-libxml parameter, the following

packages need to be installed (For Red Hat Enterprise Linux 7).

• libxml2 (version >= 2.6.23)

• libxml2-devel

• xz-devel

postgres=# SELECT pg_current_logfile() ;

 pg_current_logfile

log/postgresql-2017-05-20_092939.log

(1 row)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 75

Example 81 xmltable function

□ regexp_match

The regexp_match function to perform pattern matching has been added. Unlike conventional

regexp_matches, it returns an array of text type. The citext Contrib module also has a regexp_match

function corresponding to the citext type.

Example 82 regexp_match function

postgres=> SELECT xmltable.*

postgres-> FROM xmldata,

postgres-> XMLTABLE('//ROWS/ROW'

postgres(> PASSING data

postgres(> COLUMNS id int PATH '@id',

postgres(> ordinality FOR ORDINALITY,

postgres(> "COUNTRY_NAME" text,

postgres(> country_id text PATH 'COUNTRY_ID',

postgres(> size_sq_km float PATH 'SIZE[@unit = "sq_km"]',

postgres(> size_other text PATH

postgres(> 'concat(SIZE[@unit!="sq_km"], " ", SIZE[@unit!="sq_km"]/@unit)',

postgres(> premier_name text PATH 'PREMIER_NAME' DEFAULT 'not specified') ;

 id | ordinality | COUNTRY_NAME | country_id | size_sq_km | size_other | premier_name

----+------------+--------------+------------+------------+--------------+---------------

 1 | 1 | Australia | AU | | | not specified

 5 | 2 | Thailand | TH | | | Prayuth Chan

 6 | 3 | Singapore | SG | 697 | | not specified

(3 rows)

postgres=> \dfS regexp_match

 List of functions

 Schema | Name | Result data type | Argument data types | Type

------------+--------------+------------------+---------------------+--------

 pg_catalog | regexp_match | text[] | text, text | normal

 pg_catalog | regexp_match | text[] | text, text, text | normal

(2 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 76

□ pg_ls_logdir / pg_ls_waldir

These functions return the name, size, update date and time of the log file list and WAL file list.

Execution of these functions requires SUPERUSER privilege.

Example 83 pg_ls_logdir / pg_ls_waldir functions

□ txid_status

The txid_status function has been added to check the status of transactions. By specifying the

transaction ID, the status of the corresponding transaction is returned.

postgres=# SELECT * FROM pg_ls_logdir() ;

 name | size | modification

----------------------------------+------+------------------------

postgresql-2017-05-20_092939.log | 5220 | 2017-05-20 21:44:21+09

(1 row)

postgres=# SELECT * FROM pg_ls_waldir() ;

 name | size | modification

--------------------------+----------+------------------------

00000001000000000000002E | 16777216 | 2017-05-19 22:55:33+09

(1 row)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 77

Example 84 txid_status function

□ JSON / JSONB type

The following functions correspond to JSON type and JSONB type.

• to_tsvector

• ts_headline

□ pg_stop_backup

The pg_stop_backup function has added a parameter wait_for_archive, which specifies to wait for

WAL's archive. By default (true), it waits for WAL archive as before.

postgres=> BEGIN ;

BEGIN

postgres=> SELECT txid_current() ;

 txid_current

 578

(1 row)

postgres=> SELECT txid_status(578) ;

 txid_status

 in progress

(1 row)

postgres=> COMMIT ;

COMMIT

postgres=> SELECT txid_status(578) ;

 txid_status

 committed

(1 row)

postgres=> SELECT txid_status(1000) ;

ERROR: transaction ID 1000 is in the future

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 78

□ pg_import_system_collations

The pg_import_system_collations function imports information into the PostgreSQL instance when

a new Collation is installed in the OS. SUPERUSER privilege is required to execute this function.

Syntax 22 pg_import_system_collations

□ to_date / to_timestamp

 The to_date function and to_timestamp functions are now strictly checked for the input values of

each field. For PostgreSQL 10, the value automatically calculated in the conventional version is an

error.

Example 85 to_date (PostgreSQL 9.6)

Example 86 to_date (PostgreSQL 10)

□ make_date

Negative values (BC) can now be specified for parameters specifying years.

Example 87 make_date (PostgreSQL 9.6)

pg_import_system_collations(if_not_exists boolean, schema regnamespace)

postgres=> SELECT to_date('2017-04-40', 'YYYY-MM-DD') ;

 to_date

 2017-05-10

(1 row)

postgres=> SELECT to_date('2017-04-40', 'YYYY-MM-DD') ;

ERROR: date/time field value out of range: "2017-04-40"

postgres=> SELECT make_date(-2000, 4, 30) ;

ERROR: date field value out of range: -2000-04-30

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 79

Example 88 make_date (PostgreSQL 10)

3.9.14 Procedural language
This section explains the enhancement of procedural language.

□ PL/Python

Plan.execute and plan.cursor statements have been added.

Example 89 execute method / cursor method

□ PL/Tcl

Transactions with "subtransaction" syntax can now be executed.

plan.execute

plan = plpy.prepare("SELECT val FROM data1 WHERE key=$1", ["NUMERIC"])

result = plan.execute(key)

plan.cursor

plan = plpy.prepare("SELECT val FROM data1 WHERE key=$1", ["NUMERIC"])

rows = plan.cursor([2])

postgres=> SELECT make_date(-2000, 4, 30) ;

 make_date

 2000-04-30 BC

(1 row)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 80

Example 90 subtransaction syntax

Pltcl.start_proc and pltclu.start_proc which are GUC which specifies initialization procedure name

have been added.

CREATE FUNCTION transfer_funds2() RETURNS void AS $$

if [catch {

subtransaction {

 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name = 'joe'"

 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name = 'mary'"

 }

} errormsg] {

set result [format "error transferring funds: %s" $errormsg]

} else {

 set result "funds transferred correctly"

}

 set plan [spi_prepare "INSERT INTO operations (result) VALUES ($1)"]

 spi_execp $plan, [list $result]

$$ LANGUAGE pltclu;

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 81

3.10 Change of configuration parameters
In PostgreSQL 10 the following parameters have been changed.

3.10.1 Added parameters
The following parameters have been added.

Table 26 Added parameters

Parameter name Description (context) Default

enable_gathermerge Enable execution plan Gather Merge (user) on

max_parallel_workers Maximum number of parallel worker process

(user)

8

max_sync_workers_per_subscript

ion

Maximum number of synchronous workers for

SUBSCRIPTION (sighup)

2

wal_consistency_checking Check the consistency of WAL on the standby

instance (superuser)

-

max_logical_replication_workers Maximum number of Logical Replication worker

process (postmaster)

4

max_pred_locks_per_relation Maximum number of pages that can be Predicate-

Lock before locking the entire relation (sighup)

-2

max_pred_locks_per_page Maximum number of records that can be

Predicate-Lock before locking the entire page

(sighup)

2

min_parallel_table_scan_size Minimum table size at which Parallel table scan

are considered (user)

8MB

min_parallel_index_scan_size Minimum table size at which Parallel index scan

are considered (user)

512kB

□ Parameter max_parallel_workers

Specifies the maximum number of parallel query worker processes that can run concurrently in the

instances. The default value is 8. In the old version, the max_worker_processes parameter was the

upper limit. If this value is set to 0, the parallel query is invalidated.

□ Parameter max_logical_replication_workers

Specifies the maximum value of the Logical Replication Worker processes to be started for each

SUBSCRIPTION. Even if the value of this parameter is less than the required value, CREATE

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 82

SUBSCRIPTION statement will not fail. The following logs are periodically output when replication

starts.

Example 91 Lack max_logical_replication_workers parameters

□ Parameter wal_consistency_checking

This parameter is used for bug checking of the WAL re-execution program in the replication

environment. For the parameter, specify the object type to be checked with a comma (,) delimiter.

The following values are available: all, hash, heap, heap 2, btree, gin, gist, sequence, spgist, brin,

generic.

□ Parameter max_pred_locks_per_page

Specifies the maximum number of tuple locks to transition to page lock.

□ Parameter max_pred_locks_per_relation

Specifies the maximum number of page locks to transition to relation lock.

3.10.2 Changed parameters
The setting range and options were changed for the following configuration parameters.

WARNING: out of logical replication worker slots

HINT: You might need to increase max_logical_replication_workers.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 83

Table 27 Changed configuration parameters (from pg_settings catalog)

Parameter name Changes

ssl The value of the context column has been changed to sighup

ssl_ca_file The value of the context column has been changed to sighup

ssl_cert_file The value of the context column has been changed to sighup

ssl_ciphers The value of the context column has been changed to sighup

ssl_crl_file The value of the context column has been changed to sighup

ssl_ecdh_curve The value of the context column has been changed to sighup

ssl_key_file The value of the context column has been changed to sighup

ssl_prefer_server_ciphers The value of the context column has been changed to sighup

bgwriter_lru_maxpages The value of max_val column was changed to INT_MAX / 2

archive_timeout The value of the short_desc column has changed

server_version_num The value of max_val / min_val column was changed to 100000

password_encryption The value of the vartype was changed to enum. "md5" or "scram-sha-

256" can specified. "on" is a alias for "md5"

max_wal_size The value of the unit column has been changed to 1MB

min_wal_size The value of the unit column has been changed to 1MB

3.10.3 Parameters with default values changed
The default values of the following configuration parameters have been changed.

Table 28 Parameters with default values changed

Parameter name PostgreSQL 9.6 PostgreSQL 10

hot_standby off on

log_line_prefix '' %m [%p]

max_parallel_workers_per_gather 0 2

max_replication_slots 0 10

max_wal_senders 0 10

password_encryption on md5

server_version 9.6.3 10beta1

server_version_num 90603 100000

wal_level minimal replica

log_directory pg_log log

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 84

□ Parameter log_line_prefix

The parameter default value has been changed.

Example 92 Parameter log_line_prefix default

3.10.4 Deprecated parameters
The following parameters are deprecated.

Table 29 Deprecated parameters

Parameter name Alternative value

min_parallel_relation_size Changed to min_parallel_table_scan_size

sql_inheritance None (same as 'on')

3.10.5 New function of authentication method
The following changes were made to the pg_hba.conf file.

□ Specify the RADIUS server

The specification of the RADIUS server necessary for RADIUS authentication changed from

"radiusserver" to "radiusservers". Multiple servers separated by commas can be specified.

□ Added SCRAM authentication

Scram-sha-256 can be specified for the authentication method in pg_hba.conf. This is an

implementation of SCRAM-SHA-256 as specified in RFC 5802 and 7677. Scram-sha-256 can also be

specified for configuration parameter password_encryption.

postgres=# SHOW log_line_prefix ;

 log_line_prefix

 %m [%p]

(1 row)

$ tail -1 data/log/postgresql-2017-05-20_093448.log

2017-05-20 09:34:48.617 JST [12187] LOG: autovacuum launcher started

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 85

3.10.6 Default value of authentication setting
The replication related default value contained in the pg_hba.conf file has been changed. By default,

the local connection is set to the "trust" setting.

Example 93 Default setting of pg_hba.conf file

3.10.7 Other parameter change
The parameter recovery_target_lsn related to "Point In Time Recovery" has been added to the

recovery.conf file. For this parameter, specify the recovery complete LSN.

Allow replication connections from localhost, by a user with the

replication privilege.

local replication all trust

host replication all 127.0.0.1/32 trust

host replication all ::1/128 trust

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 86

3.11 Change of utility
This section explain the major function enhancement points of utility commands.

3.11.1 psql
The following functions have been added to the psql command.

□ \d command

The format of table information outputted by \d command has been changed. "Modifier" column that

was conventionally used has been divided into Collation, Nullable, and Default.

Example 94 Display table information (PostgreSQL 9.6)

Example 95 Display table information (PostgreSQL 10)

□ Additional information of the \timing command

 The \timing command controls the output of the execution time of the SQL statement. In the new

version, time format that is easy to understand has been added to the execution time output. When

the SQL execution time is less than 1 second, it is outputted in the same format as the old version.

postgres=> \d data1

 Table "public.data1"

 Column | Type | Modifiers

--------+-----------------------+-----------

 c1 | numeric | default 1

 c2 | character varying(10) | not null

postgres=> \d data1

 Table "public.data1"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------

 c1 | numeric | | | 1

 c2 | character varying(10) | | not null |

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 87

Example 96 Added output of \timing command

□ \gx command

The \gx command reruns the most recently executed SQL statement in the extended format.

Example 97 \gx command

□ \set command

More parameters have been displayed by the \set command.

Example 98 \set command

postgres=> \timing

Timing is on.

postgres=> INSERT INTO data1 values (generate_series(1, 10000000)) ;

INSERT 0 10000000

Time: 61086.012 ms (01:01.086)

postgres=> SELECT * FROM data1 ;

 c1 | c2

----+------

 1 | data

(1 row)

postgres=> \gx

-[RECORD 1]

c1 | 1

c2 | data

postgres=> \set

AUTOCOMMIT = 'on'

COMP_KEYWORD_CASE = 'preserve-upper'

DBNAME = 'demodb'

ECHO = 'none'

…

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 88

□ \if, \elif, \else, \endif command

It is now possible to perform conditional branching within the psql command. Conditional branching

can be performed between \if, \else, and \endif, and the commands there between are treated as a block.

For \If command and \elif command, the parameters that can determined True or False must be

specified. It is also possible to nest conditional statements.

Example 99 \if command

3.11.2 pg_ctl
The following functions have been added to the pg_ctl command.

□ Wait for promotion

The pg_ctl command can specify an option '-w' to wait for the standby instance to be promoted. In

the past, it was necessary to refer to the trigger file to confirm completion of promotion.

□ Added aliases for options

"--wait" and "--no-wait " can be used as aliases for option "-w" and "-W ". Also, "--options" can be

used for "-o" to specify options.

□ Wait for startup (-w) to default

By default, all operations have become to wait for operation completion (--wait). In the past, the

default behavior of instance startup and promotion processing did not wait for operation completion.

3.11.3 pg_basebackup
The following changes have been added to the pg_basebackup command.

SELECT

EXISTS(SELECT 1 FROM customer WHERE customer_id=123) AS is_customer,

EXISTS(SELECT 1 FROM employee WHERE employee_id=456) AS is_employee ;

\gset

\if :is_customer

SELECT * FROM customer WHERE customer_id = 123 ;

\elif :is_employee

SELECT * FROM employee WHERE employee_id = 456 ;

\endif

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 89

□ Change default mode

The default WAL transfer mode is now Stream. For this reason, connections to multiple wal sender

processes are used by default.

□ Discontinue the -x option

The -x option (--xlog option) has been deprecated.

□ Change the -X option

For -X option, value "none" which means that transaction log does not included in the backup can be

specified now. Also, the long option name has been changed from "--xlog-method" to "--wal-method".

□ Change the --xlogdir option

The option name has been changed from "--xlogdir" to "--waldir".

□ -Ft option and -Xstream option combination

The option to output backup data to tar file -Ft and the -Xstream option can now be used at the same

time. In this case, the pg_wal.tar file in which transaction logs are stored in the directory specified by

the -D option is output.

Example 100 -Ft option and -Xstream option

□ Using temporary replication slots

When the slot name (-S) is not specified (and --no-slot is not specified), temporary replication slot is

$ pg_basebackup -D back1 -v -Ft -Xstream

pg_basebackup: initiating base backup, waiting for checkpoint to complete

pg_basebackup: checkpoint completed

…

pg_basebackup: waiting for background process to finish streaming ...

pg_basebackup: base backup completed

$ ls back1/

base.tar pg_wal.tar

$ tar tvf back1/pg_wal.tar

-rw------- postgres/postgres 16777216 2017-05-20 16:36 0000001000000000000002F

-rw------- postgres/postgres 0 2017-05-20 16:36

archive_status/00000001000000000000002F.done

$

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 90

used. Below is the log when log_replication_commands parameter is set to "on". Temporary slots with

names starting with pg_basebackup_ have been created.

Example 101 Temporary replication slot creation log.

If the replication slot is full, creating replication slot fails so that pg_basebackup command fails.

Please check that the parameter max_replication_slots has free space.

Example 102 Error when there is no margin in the number of replication slots

□ Cleanup on error

When an error occurs during the pg_basebackup command or when a signal received, the file in the

directory specified by the -D parameter will be deleted. If you do not want the delete operation, you

can specify the parameter --no-clean (or -n).

□ --verbose mode output

More detailed information is displayed when parameter --verbose (or -v) is specified.

LOG: received replication command: IDENTIFY_SYSTEM

LOG: received replication command: BASE_BACKUP LABEL 'pg_basebackup

base backup' NOWAIT

LOG: received replication command: IDENTIFY_SYSTEM

LOG: received replication command: CREATE_REPLICATION_SLOT

"pg_basebackup_12889" TEMPORARY PHYSICAL RESERVE_WAL

LOG: received replication command: START_REPLICATION SLOT

"pg_basebackup_12889" 0/49000000 TIMELINE 1

$ pg_basebackup -D back

pg_basebackup: could not connect to server: FATAL: number of requested

standby connections exceeds max_wal_senders (currently 0)

pg_basebackup: removing contents of data directory "back"

$ echo $?

1

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 91

Example 103 Output in --verbose mode

3.11.4 pg_dump
The following options have been added.

□ -B (--no-blobs)

Exclude large objects

□ --no-subscriptions

 Exclude SUBSCRIPTION objects used for Logical Replication

□ --no-publications

Exclude PUBLICATION objects used for Logical Replication

□ --no-sync

Does not execute sync system call after writing file. By default, the sync call is executed to

ensure a reliable write operation.

3.11.5 pg_dumpall
The following options have been added.

□ --no-sync

Does not execute sync system call after writing file. By default, the sync call is executed to

ensure a reliable write operation.

□ --no-role-passwords

Does not dump role's password.

□ --no-subscriptions

 Exclude SUBSCRIPTION objects used for Logical Replication

□ --no-publications

$ pg_basebackup -D back --verbose

pg_basebackup: initiating base backup, waiting for checkpoint to complete

pg_basebackup: checkpoint completed

pg_basebackup: write-ahead log start point: 0/35000028 on timeline 1

pg_basebackup: starting background WAL receiver

pg_basebackup: write-ahead log end point: 0/35000130

pg_basebackup: waiting for background process to finish streaming ...

pg_basebackup: base backup completed

$

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 92

Exclude PUBLICATION objects used for Logical Replication

3.11.6 pg_recvlogical
The -E option (--endpos option) to terminate the program after receiving the specified LSN has been

added

3.11.7 pgbench
"--log-prefix" parameter to change the prefix string of the log file has been added. The default value

is "pgbench_log" as in the previous version. In addition to the above, some new functions were

provided to the pgbench command, but no verification has been done.

3.11.8 initdb
"--noclean" and "--nosync" options have been changed to "--no-clean" and "--no-sync" option.

3.11.9 pg_receivexlog
 The name of the command was changed to pg_receivewal. The --compress parameter can now be

specified to compress the output WAL file. Compression ratio can be specified from 0 to 9. In order

to use this function it is necessary to build in the environment where the libz library is installed.

3.11.10 pg_restore
The following options have been added.

□ -N (--exclude-schema)

To specify the name of the schema not to be restored has been added.

□ --no-subscriptions

 Exclude SUBSCRIPTION objects used for Logical Replication

□ --no-publications

Exclude PUBLICATION objects used for Logical Replication

3.11.11 pg_upgrade
Internally it treats tables and sequences as separate objects.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 93

3.11.12 createuser
"--unencrypted" option (-N option) has been deprecated.

3.11.13 createlang / droplang
The createlang command, droplang command has been deprecated.

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 94

3.12 Contrib modules
This section describes the new features of the Contrib module.

3.12.1 postgres_fdw
The following enhancements have been added to the postgres_fdw module.

□ Push-down of aggregation processing

It is now possible to push down of FULL JOIN between remote tables.

Example 104 SQL for local execution

The above SQL statement is converted to the following SQL statement at FOREIGN SERVER.

Example 105 Remote execution SQL (from log_statement = 'all' log)

□ Push down of FULL JOIN

Pushdown is now done when doing FULL JOIN between remote tables.

postgres=# SELECT COUNT(*), AVG(c1), SUM(c1) FROM datar1 ;

count | avg | sum

-------+----------------------+--------

 1000 | 500.5000000000000000 | 500500

(1 row)

statement: START TRANSACTION ISOLATION LEVEL REPEATABLE READ

execute <unnamed>: DECLARE c1 CURSOR FOR

 SELECT count(*), avg(c1), sum(c1) FROM public.datar1

statement: FETCH 100 FROM c1

statement: CLOSE c1

statement: COMMIT TRANSACTION

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 95

Example 106 FULL JOIN between remote tables

3.12.2 file_fdw
A "program" option to run the application has been added. The program option is specified instead

of the filename option indicating the file name. When the SELECT statement for FOREIGN TABLE

is executed, the specified program is automatically executed. The content that the executed program

outputs to the standard output is returned to the application as tuples.

Example 107 Program specified file_fdw module

postgres=# CREATE EXTENSION file_fdw ;

CREATE EXTENSION

postgres=# CREATE SERVER fs FOREIGN DATA WRAPPER file_fdw ;

CREATE SERVER

postgres=# CREATE FOREIGN TABLE tfile1 (id NUMERIC, val VARCHAR(10)) SERVER fs

OPTIONS (program '/home/postgres/bin/file_fdw.py', delimiter ',') ;

CREATE FOREIGN TABLE

postgres=# SELECT * FROM tfile1 ;

postgres=> EXPLAIN (VERBOSE, COSTS OFF) SELECT * FROM (SELECT * FROM remote1 WHERE

c1 < 10000) r1 FULL JOIN (SELECT * FROM remote2 WHERE c1 < 10000) r2 ON (TRUE) LIMIT

10 ;

 QUERY PLAN

--

 Limit

 Output: remote1.c1, remote1.c2, remote2.c1, remote2.c2

 -> Foreign Scan

 Output: remote1.c1, remote1.c2, remote2.c1, remote2.c2

 Relations: (public.remote1) FULL JOIN (public.remote2)

 Remote SQL: SELECT s4.c1, s4.c2, s5.c1, s5.c2 FROM ((SELECT c1, c2 FROM

public.remote1 WHERE ((c1 < 10000::numeric))) s4(c1, c2) FULL JOIN (SELECT c1, c2

FROM public.remote2 WHERE ((c1 < 10000::numeric))) s5(c1, c2) ON (TRUE))

(6 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 96

In the above example, when FOREIGN TABLE tfile1 is searched, the program file_fdw.py is

executed. The program uses standard output as follows.

Example 108 Examples of programs executed

The end of the program is regarded as the end of the SELECT statement. Internally, the program is

passed to popen(3) function and executed (OpenPipeStream function in src/backend/storage/file/fd.c

file).

3.12.3 amcheck
The amcheck module to check the consistency of the BTree index has been added to the Contrib

module. The following functions have been added to this module.

• bt_index_check(index regclass)

Checks the integrity of the specified BTree index

• bt_index_parent_check(index regclass)

Checks the consistency of parent-child index

In the example below, the bt_index_check function is executed for the index (idx1_check1) where

some data is corrupted.

Example 109 Execution of bt_index_check function

3.12.4 pageinspect
The following functions corresponding to Hash Index have been added.

postgres=# CREATE EXTENSION amcheck ;

CREATE EXTENSION

postgres=# SELECT bt_index_check('idx1_check1') ;

ERROR: item order invariant violated for index "idx1_check1"

DETAIL: Lower index tid=(1,2) (points to heap tid=(0,2)) higher index

tid=(1,3) (points to heap tid=(0,3)) page lsn=0/7EFE4638.

#!/bin/python

for x in range(1000):

 print x,",test"

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 97

• hash_page_type

• hash_page_stats

• hash_page_items

• hash_metapage_info

• page_checksum

• bt_page_items(IN page bytea)

3.12.5 pgstattuple
The following functions have been added.

• pgstathashindex

Provides information on Hash Index.

Example 110 pgstathashindex function

3.12.6 btree_gist / btree_gin
GiST indexes can now be created in UUID type columns and ENUM type columns. GIN index can

be created in ENUM type columns.

postgres=# SELECT * FROM pgstathashindex('idx1_hash1') ;

-[RECORD 1]--+----------------

version | 3

bucket_pages | 33

overflow_pages | 15

bitmap_pages | 1

unused_pages | 32

live_items | 13588

dead_items | 0

free_percent | 58.329244357213

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 98

Example 111 GiST index creation for columns of UUID type and ENUM type

3.12.7 pg_stat_statements
 The format of the SQL statement stored in the query column of the pg_stat_statements view has been

changed. The literal value of the WHERE clause was conventionally output as a question mark (?),

but it has been changed to $ {N} (N = 1, 2, ...).

Example 112 pg_stat_statements view

3.12.8 tsearch2
The tsearch2 module has been deleted.

postgres=# CREATE EXTENSION btree_gist ;

CREATE EXTENSION

postgres=> CREATE TYPE type1 AS ENUM ('typ1', 'typ2', 'typ3') ;

CREATE TYPE

postgres=> CREATE TABLE gist1(c1 UUID, c2 type1) ;

CREATE TABLE

postgres=> CREATE INDEX idx1_gist1 ON gist1 USING gist (c1) ;

CREATE INDEX

postgres=> CREATE INDEX idx2_gist1 ON gist1 USING gist (c2) ;

CREATE INDEX

postgres=> SELECT query FROM pg_stat_statements WHERE query LIKE '%part1%' ;

 query

--

SELECT COUNT(*) FROM part1 WHERE c1=$1

SELECT COUNT(*) FROM part1 WHERE c1=$1 AND c2=$2

(2 rows)

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 99

URL list

The following web sites are the references to create this material.

• Release Notes

https://www.postgresql.org/docs/devel/static/release-10.html

• Commitfests

https://commitfest.postgresql.org/

• PostgreSQL 10 Beta Manual

https://www.postgresql.org/docs/devel/static/index.html

• GitHub

https://github.com/postgres/postgres

• Open source developer based in Japan (Michael Paquier)

http://paquier.xyz/

• Hibino Kiroku Bekkan (Nuko@Yokohama)

http://d.hatena.ne.jp/nuko_yokohama/

• Qiita (Nuko@Yokohama)

http://qiita.com/nuko_yokohama

• pgsql-hackers Mailing list

https://www.postgresql.org/list/pgsql-hackers/

• Announce of PostgreSQL 10 Beta 1

https://www.postgresql.org/about/news/1749/

• PostgreSQL 10 Roadmap

https://blog.2ndquadrant.com/postgresql-10-roadmap/

• PostgreSQL10 Roadmap

https://wiki.postgresql.org/wiki/PostgreSQL10_Roadmap

• Slack - postgresql-jp

https://postgresql-jp.slack.com/

https://www.postgresql.org/docs/devel/static/release-10.html
https://commitfest.postgresql.org/
https://www.postgresql.org/docs/devel/static/index.html
https://github.com/postgres/postgres
http://d.hatena.ne.jp/nuko_yokohama/
http://qiita.com/nuko_yokohama
https://www.postgresql.org/list/pgsql-hackers/
https://www.postgresql.org/about/news/1749/
https://blog.2ndquadrant.com/postgresql-10-roadmap/
https://wiki.postgresql.org/wiki/PostgreSQL10_Roadmap
https://postgresql-jp.slack.com/

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 100

Change history

Change history

Version Date Author Description

0.1 Apr 4, 2017 Noriyoshi Shinoda Create internal review version

Reviewers:

 Satoshi Nagayasu

(Uptime Technologies, LCC.)

 Tomoo Takahashi (HPE)

0.9

May 21, 2017 Noriyoshi Shinoda Recheck completed to respond to for

PostgreSQL 10 Beta 1

1.0 May 22, 2017 Noriyoshi Shinoda Create a public version

© 2016-2017 Hewlett-Packard Enterprise Japan Co, Ltd. 101

	Index
	1. About This Document
	1.1 Purpose
	1.2 Audience
	1.3 Scope
	1.4 Software Version
	1.5 Question, Comment, and Responsibility
	1.6 Notation

	2. Version notation
	3. New Features
	3.1 Overview
	3.1.1 For large amount data
	3.1.2 For reliability improvement
	3.1.3 For maintenance task
	3.1.4 Incompatibility

	3.2 Native Partition Table
	3.2.1 Overview
	3.2.2 List Partition Table
	3.2.3 Range Partition Table
	3.2.4 Existing tables and partitions
	3.2.5 Operation on partition table
	3.2.6 Execution Plan
	3.2.7 Catalog
	3.2.8 Restriction

	3.3 Logical Replication
	3.3.1 Overview
	3.3.2 Related resources
	3.3.3 Examples
	3.3.4 Collision and inconsistency
	3.3.5 Restriction

	3.4 Enhancement of Parallel Query
	3.4.1 PREPARE / EXECUTE statement
	3.4.2 Parallel Index Scan
	3.4.3 SubPlan
	3.4.4 Parallel Merge Join / Gather Merge
	3.4.5 Parallel bitmap heap scan

	3.5 Architecture
	3.5.1 Added Catalogs
	3.5.2 Modified catalogs
	3.5.3 Enhancement of libpq library
	3.5.4 Change from XLOG to WAL
	3.5.5 Temporary replication slot
	3.5.6 Change instance startup log
	3.5.7 WAL of hash index
	3.5.8 Added roles
	3.5.9 Custom Scan Callback
	3.5.10 Size of WAL file
	3.5.11 ICU
	3.5.12 EUI-64 data type
	3.5.13 Unique Join
	3.5.14 Shared Memory Address

	3.6 Monitoring
	3.6.1 Monitor wait events
	3.6.2 EXPLAIN SUMMARY statement
	3.6.3 VACUUM VERBOSE statement

	3.7 Quorum-based synchronous replication
	3.8 Enhancement of Row Level Security
	3.8.1 Overview
	3.8.2 Validation of multiple POLICY setting

	3.9 Enhancement of SQL statement
	3.9.1 UPDATE statement and ROW keyword
	3.9.2 CREATE STATISTICS statement
	3.9.3 GENERATED AS IDENTITY column
	3.9.4 ALTER TYPE statement
	3.9.5 CREATE SEQUENCE statement
	3.9.6 COPY statement
	3.9.7 CREATE INDEX statement
	3.9.8 CREATE TRIGGER statement
	3.9.9 DROP FUNCTION statement
	3.9.10 ALTER DEFAULT PRIVILEGE statement
	3.9.11 CREATE SERVER statement
	3.9.12 CREATE USER statement
	3.9.13 Functions
	3.9.14 Procedural language

	3.10 Change of configuration parameters
	3.10.1 Added parameters
	3.10.2 Changed parameters
	3.10.3 Parameters with default values changed
	3.10.4 Deprecated parameters
	3.10.5 New function of authentication method
	3.10.6 Default value of authentication setting
	3.10.7 Other parameter change

	3.11 Change of utility
	3.11.1 psql
	3.11.2 pg_ctl
	3.11.3 pg_basebackup
	3.11.4 pg_dump
	3.11.5 pg_dumpall
	3.11.6 pg_recvlogical
	3.11.7 pgbench
	3.11.8 initdb
	3.11.9 pg_receivexlog
	3.11.10 pg_restore
	3.11.11 pg_upgrade
	3.11.12 createuser
	3.11.13 createlang / droplang

	3.12 Contrib modules
	3.12.1 postgres_fdw
	3.12.2 file_fdw
	3.12.3 amcheck
	3.12.4 pageinspect
	3.12.5 pgstattuple
	3.12.6 btree_gist / btree_gin
	3.12.7 pg_stat_statements
	3.12.8 tsearch2

	URL list
	Change history

